

Hands-On System
Programming with Linux

Explore Linux system programming interfaces, theory,
and practice

Kaiwan N Billimoria

BIRMINGHAM - MUMBAI

Hands-On System Programming with
Linux
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Priyanka Deshpande
Technical Editor: Rutuja Patade
Copy Editor: Safis Editing
Project Coordinator: Drashti Panchal
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Tom Scaria
Production Coordinator: Arvindkumar Gupta

First published: October 2018

Production reference: 1311018

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-847-5

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Kaiwan N Billimoria taught himself programming on his dad's IBM PC back in 1983.
He was programming in C and Assembly on DOS until he discovered the joys of
Unix (via Richard Steven's iconic book, UNIX Network Programming, and by writing C
code on SCO Unix).

Kaiwan has worked on many aspects of the Linux system programming stack,
including Bash scripting, system programming in C, kernel internals, and embedded
Linux work. He has actively worked on several commercial/OSS projects. His
contributions include drivers to the mainline Linux OS, and many smaller projects
hosted on GitHub. His Linux passion feeds well into his passion for teaching these
topics to engineers, which he has done for over two decades now. It doesn't hurt that
he is a recreational ultra-marathoner too.

Writing a book is a lot of hard work, tightly coupled with teamwork. My deep
gratitude to the team at Packt: Rohit, Priyanka, and Rutuja, as well as the technical
reviewer, Tigran, and so many other behind-the-scenes workers. Of course, none of
this would have been remotely possible without support from my family: my
parents, Diana and Nadir; my brother, Darius; my wife, Dilshad; and my super
kids, Sheroy and Danesh! Heartfelt thanks to you all.

About the reviewer
Tigran Aivazian has a master's degree in computer science and a master's degree in
theoretical physics. He has written BFS and Intel microcode update drivers that have
become part of the official Linux kernel. He is the author of a book titled Linux 2.4
Kernel Internals, which is available in several languages on the Linux documentation
project. He worked at Veritas as a Linux kernel architect, improving the kernel and
teaching OS internals. Besides technological pursuits, Tigran has produced scholarly
Bible editions in Hebrew, Greek, Syriac, Slavonic, and ancient Armenian. Recently, he
published The British Study Edition of the Urantia Papers. He is currently working on
the foundations of quantum mechanics in a branch of physics called quantum
infodynamics.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Linux System Architecture 9
Technical requirements 9
Linux and the Unix operating system 10
The Unix philosophy in a nutshell 11

Everything is a process – if it's not a process, it's a file 12
One tool to do one task 15
Three standard I/O channels 17

Word count 18
cat 19

Combine tools seamlessly 21
Plain text preferred 23
CLI, not GUI 24
Modular, designed to be repurposed by others 24
Provide mechanisms, not policies 25

Pseudocode 25
Linux system architecture 27

Preliminaries 27
The ABI 27
Accessing a register's content via inline assembly 31
Accessing a control register's content via inline assembly 33
CPU privilege levels 34

Privilege levels or rings on the x86 35
Linux architecture 38

Libraries 39
System calls 40
Linux – a monolithic OS 41

What does that mean? 42
Execution contexts within the kernel 46

Process context 47
Interrupt context 47

Summary 48

Chapter 2: Virtual Memory 49
Technical requirements 49
Virtual memory 50

No VM – the problem 51
Objective 52

Virtual memory 54
Addressing 1 – the simplistic flawed approach 58
Addressing 2 – paging in brief 61

Table of Contents

[ii]

Paging tables – simplified 63
Indirection 65
Address-translation 65

Benefits of using VM 66
Process-isolation 66
The programmer need not worry about physical memory 67
Memory-region protection 68
SIDEBAR :: Testing the memcpy() C program 69

Process memory layout 73
Segments or mappings 74

Text segment 76
Data segments 76
Library segments 77
Stack segment 78

What is stack memory? 78
Why a process stack? 78
Peeking at the stack 81

Advanced – the VM split 84
Summary 89

Chapter 3: Resource Limits 90
Resource limits 90
Granularity of resource limits 92

Resource types 93
Available resource limits 93

Hard and soft limits 95
Querying and changing resource limit values 98

Caveats 100
A quick note on the prlimit utility 101

Using prlimit(1) – examples 101
API interfaces 104

Code examples 106
Permanence 111

Summary 112

Chapter 4: Dynamic Memory Allocation 113
The glibc malloc(3) API family 114

The malloc(3) API 114
malloc(3) – some FAQs 117
malloc(3) – a quick summary 122

The free API 122
free – a quick summary 124

The calloc API 124
The realloc API 125

The realloc(3) – corner cases 126
The reallocarray API 127

Beyond the basics 128
The program break 128
Using the sbrk() API 128

Table of Contents

[iii]

How malloc(3) really behaves 132
Code example – malloc(3) and the program break 133

Scenario 1 – default options 133
Scenario 2 – showing malloc statistics 134
Scenario 3 – large allocations option 135

Where does freed memory go? 136
Advanced features 136

Demand-paging 137
Resident or not? 139

Locking memory 140
Limits and privileges 141
Locking all pages 145

Memory protection 146
Memory protection – a code example 147

An Aside – LSM logs, Ftrace 155
LSM logs 155
Ftrace 156
An experiment – running the memprot program on an ARM-32 156
Memory protection keys – a brief note 159

Using alloca to allocate automatic memory 159
Summary 163

Chapter 5: Linux Memory Issues 164
Common memory issues 165

Incorrect memory accesses 167
Accessing and/or using uninitialized variables 168

Test case 1: Uninitialized memory access 168
Out-of-bounds memory accesses 170

Test case 2 170
Test case 3 171
Test case 4 172
Test case 5 173
Test case 6 174
Test case 7 175

Use-after-free/Use-after-return bugs 176
Test case 8 177
Test case 9 178
Test case 10 179

Leakage 182
Test case 11 182
Test case 12 184
Test case 13 187

Test case 13.1 188
Test case 13.2 189
Test case 13.3 191

Undefined behavior 192
Fragmentation 193
Miscellaneous 194

Summary 195

Chapter 6: Debugging Tools for Memory Issues 196
Tool types 197

Table of Contents

[iv]

Valgrind 198
Using Valgrind's Memcheck tool 198
Valgrind summary table 210
Valgrind pros and cons : a quick summary 210

Sanitizer tools 211
Sanitizer toolset 212
Building programs for use with ASan 213
Running the test cases with ASan 214
AddressSanitizer (ASan) summary table 227
AddressSanitizer pros and cons – a quick summary 228

Glibc mallopt 230
Malloc options via the environment 232

Some key points 233
Code coverage while testing 233
What is the modern C/C++ developer to do? 234
A mention of the malloc API helpers 234

Summary 236

Chapter 7: Process Credentials 237
The traditional Unix permissions model 238

Permissions at the user level 239
How the Unix permission model works 239

Determining the access category 242
Real and effective IDs 244

A puzzle – how can a regular user change their password? 247
The setuid and setgid special permission bits 249

Setting the setuid and setgid bits with chmod 250
Hacking attempt 1 251

System calls 254
Querying the process credentials 254

Code example 255
Sudo – how it works 256
What is a saved-set ID? 257

Setting the process credentials 257
Hacking attempt 2 258

An aside – a script to identify setuid-root and setgid installed programs 262
setgid example – wall 264
Giving up privileges 267
Saved-set UID – a quick demo 268
The setres[u|g]id(2) system calls 271

Important security notes 273
Summary 274

Chapter 8: Process Capabilities 275
The modern POSIX capabilities model 276

Motivation 276
POSIX capabilities 277
Capabilities – some gory details 280

OS support 280

Table of Contents

[v]

Viewing process capabilities via procfs 280
Thread capability sets 282
File capability sets 283

Embedding capabilities into a program binary 284
Capability-dumb binaries 288

Getcap and similar utilities 288
Wireshark – a case in point 289

Setting capabilities programmatically 290
Miscellaneous 296

How ls displays different binaries 296
Permission models layering 297
Security tips 298

FYI – under the hood, at the level of the Kernel 298
Summary 299

Chapter 9: Process Execution 300
Technical requirements 300
Process execution 301

Converting a program to a process 301
The exec Unix axiom 302

Key points during an exec operation 303
Testing the exec axiom 304

Experiment 1 – on the CLI, no frills 305
Experiment 2 – on the CLI, again 305

The point of no return 306
Family time – the exec family APIs 307

The wrong way 310
Error handling and the exec 310
Passing a zero as an argument 310
Specifying the name of the successor 311

The remaining exec family APIs 314
The execlp API 314
The execle API 316
The execv API 316

Exec at the OS level 317
Summary table – exec family of APIs 318
Code example 319

Summary 322

Chapter 10: Process Creation 323
Process creation 324

How fork works 324
Using the fork system call 327

Fork rule #1 328
Fork rule #2 – the return 329
Fork rule #3 335

Atomic execution? 337
Fork rule #4 – data 337
Fork rule #5 – racing 338
The process and open files 339

Table of Contents

[vi]

Fork rule #6 – open files 341
Open files and security 343

Malloc and the fork 344
COW in a nutshell 346

Waiting and our simpsh project 347
The Unix fork-exec semantic 348

The need to wait 349
Performing the wait 350

Defeating the race after fork 350
Putting it together – our simpsh project 351
The wait API – details 355

The scenarios of wait 358
Wait scenario #1 359
Wait scenario #2 359
Fork bombs and creating more than one child 360
Wait scenario #3 362

Variations on the wait – APIs 362
The waitpid(2) 362
The waitid (2) 365
The actual system call 366

A note on the vfork 368
More Unix weirdness 368

Orphans 368
Zombies 369

Fork rule #7 370
The rules of fork – a summary 371

Summary 371

Chapter 11: Signaling - Part I 372
Why signals? 373

The signal mechanism in brief 373
Available signals 376

The standard or Unix signals 377
Handling signals 380

Using the sigaction system call to trap signals 381
Sidebar – the feature test macros 382
The sigaction structure 382
Masking signals 387

Signal masking with the sigprocmask API 387
Querying the signal mask 388

Sidebar – signal handling within the OS – polling not interrupts 391
Reentrant safety and signalling 391

Reentrant functions 391
Async-signal-safe functions 393

Alternate ways to be safe within a signal handler 393
Signal-safe atomic integers 394

Powerful sigaction flags 397
Zombies not invited 398

No zombies! – the classic way 399
No zombies! – the modern way 400

The SA_NOCLDSTOP flag 402

Table of Contents

[vii]

Interrupted system calls and how to fix them with the SA_RESTART 402
The once only SA_RESETHAND flag 404
To defer or not? Working with SA_NODEFER 405

Signal behavior when masked 405
Case 1 : Default : SA_NODEFER bit cleared 406
Case 2 : SA_NODEFER bit set 407
Running of case 1 – SA_NODEFER bit cleared [default] 411
Running of case 2 – SA_NODEFER bit set 412

Using an alternate signal stack 415
Implementation to handle high-volume signals with an alternate signal stack 416
Case 1 – very small (100 KB) alternate signal stack 418
Case 2 : A large (16 MB) alternate signal stack 419

Different approaches to handling signals at high volume 420
Summary 420

Chapter 12: Signaling - Part II 421
Gracefully handling process crashes 422

Detailing information with the SA_SIGINFO 422
The siginfo_t structure 423
Getting system-level details when a process crashes 427

Trapping and extracting information from a crash 428
Register dumping 433
Finding the crash location in source code 437

Signaling – caveats and gotchas 439
Handling errno gracefully 439

What does errno do? 439
The errno race 440
Fixing the errno race 441

Sleeping correctly 442
The nanosleep system call 443

Real-time signals 446
Differences from standard signals 447

Real time signals and priority 448
Sending signals 452

Just kill 'em 452
Killing yourself with a raise 453
Agent 00 – permission to kill 453
Are you there? 454

Signaling as IPC 455
Crude IPC 455
Better IPC – sending a data item 456

Sidebar – LTTng 461
Alternative signal-handling techniques 463

Synchronously waiting for signals 463
Pause, please 464

Waiting forever or until a signal arrives 464
Synchronously blocking for signals via the sigwait* APIs 465

The sigwait library API 465
The sigwaitinfo and the sigtimedwait system calls 470

The signalfd(2) API 471

Table of Contents

[viii]

Summary 474

Chapter 13: Timers 475
Older interfaces 476

The good ol' alarm clock 476
Alarm API – the downer 479

Interval timers 479
A simple CLI digital clock 483

Obtaining the current time 485
Trial runs 487

A word on using the profiling timers 488
The newer POSIX (interval) timers mechanism 490

Typical application workflow 491
Creating and using a POSIX (interval) timer 491

The arms race – arming and disarming a POSIX timer 494
Querying the timer 496
Example code snippet showing the workflow 496
Figuring the overrun 499

POSIX interval timers – example programs 500
The reaction – time game 500

How fast is fast? 500
Our react game – how it works 501
React – trial runs 503
The react game – code view 505

The run:walk interval timer application 509
A few trial runs 510
The low – level design and code 512

Timer lookup via proc 516
A quick mention 517

Timers via file descriptors 517
A quick note on watchdog timers 519

Summary 520

Chapter 14: Multithreading with Pthreads Part I - Essentials 521
Multithreading concepts 522

What exactly is a thread? 522
Resource sharing 523

Multiprocess versus multithreaded 527
Example 1 – creation/destruction – process/thread 528

The multithreading model 529
Example 2 – matrix multiplication – process/thread 531
Example 3 – kernel build 536

On a VM with 1 GB RAM, two CPU cores and parallelized make -j4 536
On a VM with 1 GB RAM, one CPU core and sequential make -j1 538

Motivation – why threads? 539
Design motivation 539

Taking advantage of potential parallelism 539
Logical separation 540
Overlapping CPU with I/O 540
Manager-worker model 541
IPC becoming simple(r) 541

Table of Contents

[ix]

Performance motivation 541
Creation and destruction 541
Automatically taking advantage of modern hardware 541
Resource sharing 542
Context switching 542

A brief history of threading 543
POSIX threads 543
Pthreads and Linux 544

Thread management – the essential pthread APIs 545
Thread creation 546
Termination 549

The return of the ghost 551
So many ways to die 554

How many threads is too many? 554
How many threads can you create? 556

Code example – creating any number of threads 558
How many threads should one create? 560

Thread attributes 562
Code example – querying the default thread attributes 563

Joining 566
The thread model join and the process model wait 571
Checking for life, timing out 572
Join or not? 573

Parameter passing 574
Passing a structure as a parameter 575
Thread parameters – what not to do 577

Thread stacks 579
Get and set thread stack size 579
Stack location 580
Stack guards 582

Summary 586

Chapter 15: Multithreading with Pthreads Part II - Synchronization 587
The racing problem 588

Concurrency and atomicity 589
The pedagogical bank account example 589
Critical sections 592

Locking concepts 593
Is it atomic? 595

Dirty reads 599
Locking guidelines 600

Locking granularity 602
Deadlock and its avoidance 603

Common deadlock types 604
Self deadlock (relock) 604
The ABBA deadlock 604

Avoiding deadlock 605
Using the pthread APIs for synchronization 606

The mutex lock 607

Table of Contents

[x]

Seeing the race 610
Mutex attributes 613

Mutex types 613
The robust mutex attribute 615
IPC, threads, and the process-shared mutex 617

Priority inversion, watchdogs, and Mars 623
Priority inversion 623
Watchdog timer in brief 625
The Mars Pathfinder mission in brief 627
Priority inheritance – avoiding priority inversion 628
Summary of mutex attribute usage 630

Mutex locking – additional variants 631
Timing out on a mutex lock attempt 631
Busy-waiting (non-blocking variant) for the lock 632
The reader-writer mutex lock 632
The spinlock variant 634

A few more mutex usage guidelines 636
Is the mutex locked? 637

Condition variables 638
No CV – the naive approach 639
Using the condition variable 639
A simple CV usage demo application 641
CV broadcast wakeup 645

Summary 647

Chapter 16: Multithreading with Pthreads Part III 648
Thread safety 648

Making code thread-safe 651
Reentrant-safe versus thread-safe 651
Summary table – approaches to making functions thread-safe 653
Thread safety via mutex locks 653
Thread safety via function refactoring 656
The standard C library and thread safety 658

List of APIs not required to be thread-safe 658
Refactoring glibc APIs from foo to foo_r 659
Some glibc foo and foo_r APIs 661

Thread safety via TLS 662
Thread safety via TSD 664

Thread cancelation and cleanup 665
Canceling a thread 665

The thread cancelation framework 666
The cancelability state 666
The cancelability type 667
Canceling a thread – a code example 670

Cleaning up at thread exit 672
Thread cleanup – code example 673

Threads and signaling 675
The issue 676
The POSIX solution to handling signals on MT 676
Code example – handling signals in an MT app 677

Threads vs processes – look again 679

Table of Contents

[xi]

The multiprocess vs the multithreading model – pros of the MT model 680
The multiprocess vs the multithreading model – cons of the MT model 681

Pthreads – a few random tips and FAQs 682
Pthreads – some FAQs 682
Debugging multithreaded (pthreads) applications with GDB 683

Summary 685

Chapter 17: CPU Scheduling on Linux 686
The Linux OS and the POSIX scheduling model 686

The Linux process state machine 687
The sleep states 688

What is real time? 690
Types of real time 691

Scheduling policies 692
Peeking at the scheduling policy and priority 694
The nice value 695
CPU affinity 696

Exploiting Linux's soft real-time capabilities 699
Scheduling policy and priority APIs 699

Code example – setting a thread scheduling policy and priority 701
Soft real-time – additional considerations 706

RTL – Linux as an RTOS 707
Summary 708

Chapter 18: Advanced File I/O 709
I/O performance recommendations 710

The kernel page cache 711
Giving hints to the kernel on file I/O patterns 712

Via the posix_fadvise(2) API 712
Via the readahead(2) API 713

MT app file I/O with the pread, pwrite APIs 714
Scatter – gather I/O 716

Discontiguous data file – traditional approach 716
Discontiguous data file – the SG – I/O approach 718
SG – I/O variations 721

File I/O via memory mapping 721
The Linux I/O code path in brief 722
Memory mapping a file for I/O 725

File and anonymous mappings 728
The mmap advantage 730
Code example 732
Memory mapping – additional points 732

DIO and AIO 734
Direct I/O (DIO) 734
Asynchronous I/O (AIO) 735
I/O technologies – a quick comparison 736

Multiplexing or async blocking I/O – a quick note 737
I/O – miscellaneous 738

Table of Contents

[xii]

Linux's inotify framework 738
I/O schedulers 738
Ensuring sufficient disk space 740
Utilities for I/O monitoring, analysis, and bandwidth control 741

Summary 742

Chapter 19: Troubleshooting and Best Practices 743
Troubleshooting tools 744

perf 744
Tracing tools 745
The Linux proc filesystem 745

Best practices 746
The empirical approach 746
Software engineering wisdom in a nutshell 746
Programming 747

A programmer’s checklist – seven rules 747
Better testing 748
Using the Linux kernel's control groups 748

Summary 749

Other Books You May Enjoy 750

Index 753

Preface
The Linux OS and its embedded and server applications are critical components of
today's key software infrastructure in a decentralized and networked universe.
Industry demand for proficient Linux developers is ever-increasing. This book aims
to give you two things: a solid theoretical base, and practical, industry-relevant
information—illustrated by code—covering the Linux system programming domain.
This book delves into the art and science of Linux system programming, including
system architecture, virtual memory, process memory and management, signaling,
timers, multithreading, scheduling, and file I/O.

This book attempts to go beyond the use API X to do Y approach; it takes pains
to explain the concepts and theory required to understand the
programming interfaces, the design decisions, and trade-offs made by
experienced developers when using them and the rationale behind them.
Troubleshooting tips and industry best practices round out the book's coverage. By
the end of this book, you will have the conceptual knowledge, as well as the hands-
on experience, needed for working with Linux system programming interfaces.

Who this book is for
Hands-On System Programming with Linux is for Linux professionals: system engineers,
programmers, and testers (QA). It's also for students; anyone, really, who wants to go
beyond using an API set to understand the theoretical underpinnings and concepts
behind the powerful Linux system programming APIs. You should be familiar with
Linux at the user level, including aspects such as logging in, using the shell via the
command-line interface, and using tools such as find, grep, and sort. A working
knowledge of the C programming language is required. No prior experience with
Linux systems programming is assumed.

What this book covers
Chapter 1, Linux System Architecture, covers the key basics: the Unix design
philosophy and the Linux system architecture. Along the way, other important
aspects—CPU privilege levels, the processor ABI, and what system calls really
are—are dealt with.

Preface

[2]

Chapter 2, Virtual Memory, dives into clearing up common misconceptions about
what virtual memory really is and why it is key to modern OS design; the layout of
the process virtual address space is covered too.

Chapter 3, Resource Limits, delves into the topic of per-process resource limits and the
APIs governing their usage.

Chapter 4, Dynamic Memory Allocation, initially covers the basics of the
popular malloc family of APIs, then dives into more advanced aspects, such as the
program break, how malloc really behaves, demand paging, memory locking and
protection, and using the alloca function.

Chapter 5, Linux Memory Issues, introduces you to the (unfortunately) prevalent
memory defects that end up in our projects due to a lack of understanding of the
correct design and use of memory APIs. Defects such as undefined behavior (in
general), overflow and underflow bugs, leakage, and others are covered.

Chapter 6, Debugging Tools for Memory Issues, shows how to leverage existing tools,
including the compiler itself, Valgrind, and AddressSanitizer, which is used to detect
the memory issues you will have seen in the previous chapter.

Chapter 7, Process Credentials, is the first of two chapters focused on having you think
about and understand security and privilege from a system perspective. Here, you'll
learn about the traditional security model – a set of process credentials – as well as the
APIs for manipulating them. Importantly, the concepts of setuid-root processes and
their security repercussions are delved into.

Chapter 8, Process Capabilities, introduces you to the modern POSIX capabilities
model and how security can benefit when application developers learn to use and
leverage this model instead of the traditional model (seen in the previous chapter).
What capabilities are, how to embed them, and practical design for security is also
looked into.

Chapter 9, Process Execution, is the first of four chapters dealing with the broad area
of process management (execution, creation, and signaling). In this particular chapter,
you'll learn how the (rather unusual) Unix exec axiom behaves and how to use the
API set (the exec family) to exploit it.

Preface

[3]

Chapter 10, Process Creation, delves into how exactly the fork(2) system call
behaves and should be used; we depict this via our seven rules of fork. The Unix fork-
exec-wait semantic is described (diving into the wait APIs as
well), orphan and zombie processes are also covered.

Chapter 11, Signaling – Part I, deals with the important topic of signals on the Linux
platform: the what, the why, and the how. We cover the powerful sigaction(2)
system call here, along with topics such as reentrant and signal-async safety, sigaction
flags, signal stacks, and others.

Chapter 12, Signaling – Part II, continues our coverage of signaling, what with
it being a large topic. We take you through the correct way to write a signal handler
for the well-known and fatal segfault, working with real-time signals, delivering
signal to processes, performing IPC with signals, and alternate means to handle
signals.

Chapter 13, Timers, teaches you about the important (and signal-related) topic of how
to set up and handle timers in real-world Linux applications. We first cover the
traditional timer APIs and quickly move onto the modern POSIX interval timers and
how to use them to this end. Two interesting, small projects are presented and walked
through.

Chapter 14, Multithreading with Pthreads Part I – Essentials, is the first of a trilogy on
multithreading with the pthreads framework on Linux. Here, we introduce you to
what exactly a thread is, how it differs from a process, and the motivation (in terms of
design and performance) for using threads. The chapter then guides you through the
essentials of writing a pthreads application on Linux ,covering thread creation,
termination, joining, and more.

Chapter 15, Multithreading with Pthreads Part II – Synchronization, is a chapter
dedicated to the really important topic of synchronization and race prevention. You
will first understand the issue at hand, then delve into the key topics of atomicity,
locking, deadlock prevention, and others. Next, the chapter teaches you how to use
pthreads synchronization APIs with respect to the mutex lock and condition
variables.

Chapter 16, Multithreading with Pthreads Part III, completes our work on
multithreading; we shed light on the key topics of thread safety, thread cancellation
and cleanup, and handling signals in a multithreaded app. We round off the chapter
with a discussion on the pros and cons of multithreading and address some FAQs.

Preface

[4]

Chapter 17, CPU Scheduling on Linux, introduces you to scheduling-related topics
that the system programmer should be aware of. We cover the Linux process/thread
state machine, the notion of real time and the three (minimal) POSIX CPU scheduling
policies that the Linux OS brings to the table. Exploiting the available APIs, you'll
learn how to write a soft real-time app on Linux. We finish the chapter with a brief
look at the (interesting!) fact that Linux can be patched to work as an RTOS.

Chapter 18, Advanced File I/O, is completely focused on the more advanced ways of
performing IO on Linux in order to gain maximum performance (as IO is often the
bottleneck). You are briefly shown how the Linux IO stack is architected (the page
cache being critical), and the APIs that give advice to the OS on file access patterns.
Writing IO code for performance, as you'll learn, involves the use of technologies
such as SG-I/O, memory mapping, DIO, and AIO.

Chapter 19, Troubleshooting and Best Practices, is a critical summation of the key points
to do with troubleshooting on Linux. You'll be briefed upon the use of powerful tools,
such as perf and tracing tools. Then, very importantly, the chapter attempts to
summarize key points on software engineering in general and programming on
Linux in particular, looking at industry best practices. We feel these are critical
takeaways for any programmer.

Appendix A, File I/O Essentials, introduces you to performing efficient file I/O on the
Linux platform, via both the streaming (stdio library layer) API set as well as the
underlying system calls. Along the way, important information on buffering and its
effects on performance are covered.

For this chapter refer to: https:/ / www. packtpub. com/ sites/ default/ files/
downloads/File_ IO_ Essentials. pdf.

Appendix B, Daemon Processes, introduces you, in a succinct fashion, to the world of
the daemon process on Linux. You'll be shown how to write a traditional SysV-style
daemon process. There is also a brief note on what is involved in constructing a
modern, new-style daemon process.

For this chapter refer to: https:/ / www. packtpub. com/ sites/ default/ files/
downloads/Daemon_ Processes. pdf.

https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/File_IO_Essentials.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf

Preface

[5]

To get the most out of this book
As mentioned earlier, this book is targeted at both Linux software professionals—be
they developers, programmers, architects, or QA staff members—as well as serious
students looking to expand their knowledge and skills with the key topics of system
programming on the Linux OS.

We assume that you are familiar with using a Linux system via the command-line
interface, the shell. We also assume that you are familiar with programming in the C
language, know how to use the editor and the compiler, and are familiar with the
basics of the Makefile. We do not assume that you have any prior knowledge of the
topics covered in the book.

To get the most out of this book—and we are very clear on this point—you must not
just read the material, but must also actively work on, try out, and modify the code
examples provided, and try and finish the assignments as well! Why?
Simple: doing is what really teaches you and internalizes a topic; making mistakes
and fixing them being an essential part of the learning process. We always advocate
an empirical approach—don't take anything at face value. Experiment, try it out for
yourself, and see.

To this end, we urge you to clone this book's GitHub repository (see the following
section for instructions), browse through the files, and try them out. Using a Virtual
Machine (VM) for experimentation is (quite obviously) definitely recommended (we
have tested the code on both Ubuntu 18.04 LTS and Fedora 27/28). A listing of
mandatory and optional software packages to install on the system is also provided
within the book's GitHub repository; please read through and install all required
utilities to get the best experience.

Last, but definitely not least, each chapter has a Further reading section, where
additional online links and books (in some cases) are mentioned; we urge you to
browse through these. You will find the Further reading material for each chapter
available on the book's GitHub repository.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[6]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ /github. com/
PacktPublishing/ Hands- on- System- Programming- with- Linux. We also have other
code bundles from our rich catalog of books and videos available at https:/ / github.
com/PacktPublishing/ . Check them out.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https:/ /www. packtpub. com/ sites/ default/
files/downloads/ 9781788998475_ ColorImages. pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Let's check these out via the source code of
our membugs.c program."

A block of code is set as follows:

include <pthread.h>
int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict
attr, int *restrict type);
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788998475_ColorImages.pdf

Preface

[7]

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

include <pthread.h>
int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict
attr, int *restrict type);
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

Any command-line input or output is written as follows:

$./membugs 3

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select C as the language via the drop-down."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email customercare@packtpub.com and mention the book title
in the subject of your message. If you have questions about any aspect of this book,
please email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packt.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

http://www.packtpub.com/submit-errata

Preface

[8]

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
https://www.packtpub.com/

1
Linux System Architecture

This chapter informs the reader about the system architecture of the Linux ecosystem.
It first conveys the elegant Unix philosophy and design fundamentals, then delves
into the details of the Linux system architecture. The importance of the ABI, CPU
privilege levels, and how modern operating systems (OSes) exploit them, along with
the Linux system architecture's layering, and how Linux is a monolithic architecture,
will be covered. The (simplified) flow of a system call API, as well as kernel-code
execution contexts, are key points.

In this chapter, the reader will be taken through the following topics:

The Unix philosophy in a nutshell
Architecture preliminaries
Linux architecture layers
Linux—a monolithic OS
Kernel execution contexts

Along the way, we'll use simple examples to make the key philosophical and
architectural points clear.

Technical requirements
A modern desktop PC or laptop is required; Ubuntu Desktop specifies the following
as recommended system requirements for installation and usage of the distribution:

2 GHz dual core processor or better
RAM

Running on a physical host: 2 GB or more system memory
Running as a guest: The host system should have at least 4
GB RAM (the more, the better and smoother the experience)

Linux System Architecture Chapter 1

[10]

25 GB of free hard drive space
Either a DVD drive or a USB port for the installer media
Internet access is definitely helpful

We recommend the reader use one of the following Linux distributions (can be
installed as a guest OS on a Windows or Linux host system, as mentioned):

Ubuntu 18.04 LTS Desktop (Ubuntu 16.04 LTS Desktop is a good choice too
as it has long term support as well, and pretty much everything should
work)

Ubuntu Desktop download link: https:/ /www. ubuntu. com/
download/ desktop

Fedora 27 (Workstation)
Download link: https:/ / getfedora. org/en_ GB/
workstation/ download/

Note that these distributions are, in their default form, OSS and non-proprietary, and
free to use as an end user.

There are instances where the entire code snippet isn't included in
the book . Thus the GitHub URL to refer the codes: https:/ /
github. com/ PacktPublishing/ Hands- on-System- Programming-
with- Linux.
Also, for the Further reading section, refer to the preceding GitHub
link.

Linux and the Unix operating system
Moore's law famously states that the number of transistors in an IC will double
(approximately) every two years (with an addendum that the cost would halve at
pretty much the same rate). This law, which remained quite accurate for many years,
is one of the things that clearly underscored what people came to realize, and even
celebrate, about the electronics and the Information Technology (IT) industry; the
sheer speed with which innovation and paradigm shifts in technology occur here is
unparalleled. So much so that we now hardly raise an eyebrow when, every year,
even every few months in some cases, new innovations and technology appear,
challenge, and ultimately discard the old with little ceremony.

https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://www.ubuntu.com/download/desktop
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://getfedora.org/en_GB/workstation/download/
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Linux System Architecture Chapter 1

[11]

Against this backdrop of rapid all-consuming change, there lives an engaging
anomaly: an OS whose essential design, philosophy, and architecture have changed
hardly at all in close to five decades. Yes, we are referring to the venerable Unix
operating system.

Organically emerging from a doomed project at AT&T's Bell Labs (Multics) in around
1969, Unix took the world by storm. Well, for a while at least.

But, you say, this is a book about Linux; why all this information about Unix? Simply
because, at heart, Linux is the latest avatar of the venerable Unix OS. Linux is a Unix-
like operating system (among several others). The code, by legal necessity, is unique;
however, the design, philosophy, and architecture of Linux are pretty much identical
to those of Unix.

The Unix philosophy in a nutshell
 To understand anyone (or anything), one must strive to first understand their (or its)
underlying philosophy; to begin to understand Linux is to begin to understand the
Unix philosophy. Here, we shall not attempt to delve into every minute detail; rather,
an overall understanding of the essentials of the Unix philosophy is our goal. Also,
when we use the term Unix, we very much also mean Linux!

The way that software (particularly, tools) is designed, built, and maintained on Unix
slowly evolved into what might even be called a pattern that stuck: the Unix design
philosophy. At its heart, here are the pillars of the Unix philosophy, design, and
architecture:

Everything is a process; if it's not a process, it's a file
One tool to do one task
Three standard I/O channel
Combine tools seamlessly
Plain text preferred
CLI, not GUI
Modular, designed to be repurposed by others
Provide the mechanism, not the policy

Let's examine these pillars a little more closely, shall we?

Linux System Architecture Chapter 1

[12]

Everything is a process – if it's not a process,
it's a file
A process is an instance of a program in execution. A file is an object on the
filesystem; beside regular file with plain text or binary content; it could also be a
directory, a symbolic link, a device-special file, a named pipe, or a (Unix-domain)
socket.

The Unix design philosophy abstracts peripheral devices (such as the keyboard,
monitor, mouse, a sensor, and touchscreen) as files – what it calls device files. By
doing this, Unix allows the application programmer to conveniently ignore the details
and just treat (peripheral) devices as though they are ordinary disk files.

The kernel provides a layer to handle this very abstraction – it's called the Virtual
Filesystem Switch (VFS). So, with this in place, the application developer can open a
device file and perform I/O (reads and writes) upon it, all using the usual API
interfaces provided (relax, these APIs will be covered in a subsequent chapter).

In fact, every process inherits three files on creation:

Standard input (stdin: fd 0): The keyboard device, by default
Standard output (stdout: fd 1): The monitor (or terminal) device, by
default
Standard error (stderr: fd 2): The monitor (or terminal) device, by default

fd is the common abbreviation, especially in code, for file
descriptor; it's an integer value that refers to the open file in
question.

Also, note that we mention it's a certain device by default – this
implies the defaults can be changed. Indeed, this is a key part of the
design: changing standard input, output, or error channels is called
redirection, and by using the familiar <, > and 2> shell operators,
these file channels are redirected to other files or devices.

On Unix, there exists a class of programs called filters.

A filter is a program that reads from its standard input, possibly
modifies the input, and writes the filtered result to its standard
output.

Linux System Architecture Chapter 1

[13]

Filters on Unix are very common utilities, such as cat, wc, sort, grep, perl, head,
and tail.

Filters allow Unix to easily sidestep design and code complexity. How?

Let's take the sort filter as a quick example. Okay, we'll need some data to sort. Let's
say we run the following commands:

$ cat fruit.txt
orange
banana
apple
pear
grape
pineapple
lemon
cherry
papaya
mango
$

Now we consider four scenarios of using sort; based on the parameter(s) we pass,
we are actually performing explicit or implicit input-, output-, and/or error-
redirection!

Scenario 1: Sort a file alphabetically (one parameter, input implicitly redirected to
file):

$ sort fruit.txt
 apple
 banana
 cherry
 grape
 lemon
 mango
 orange
 papaya
 pear
 pineapple
$

Linux System Architecture Chapter 1

[14]

All right!

Hang on a second, though. If sort is a filter (and it is), it should read from its stdin
(the keyboard) and write to its stdout (the terminal). It is indeed writing to the
terminal device, but it's reading from a file, fruit.txt.

This is deliberate; if a parameter is provided, the sort program treats it as standard
input, as clearly seen.

Also, note that sort fruit.txt is identical to sort < fruit.txt.

Scenario 2: Sort any given input alphabetically (no parameters, input and output
from and to stdin/stdout):

$ sort
mango
apple
pear
^D
apple
mango
pear
$

Once you type sort and press the Enter key, and the sort process comes alive and just
waits. Why? It's waiting for you, the user, to type something. Why? Recall, every
process by default reads its input from standard input or stdin – the keyboard
device! So, we type in some fruit names. When we're done, press Ctrl + D. This is the
default character sequence that signifies end-of-file (EOF), or in cases such as this,
end-of-input. Voila! The input is sorted and written. To where? To the sort process's
stdout – the terminal device, hence we see it.

Scenario 3: Sort any given input alphabetically and save the output to a file (explicit
output redirection):

$ sort > sorted.fruit.txt
mango
apple
pear
^D
$

Linux System Architecture Chapter 1

[15]

Similar to Scenario 2, we type in some fruit names and then Ctrl + D to tell sort we're
done. This time, though, note that the output is redirected (via the > meta-character)
to the sorted.fruits.txt file!

So, as expected is the following output:

$ cat sorted.fruit.txt
apple
mango
pear
$

Scenario 4: Sort a file alphabetically and save the output and errors to a file (explicit
input-, output-, and error-redirection):

$ sort < fruit.txt > sorted.fruit.txt 2> /dev/null
$

Interestingly, the end result is the same as in the preceding scenario, with the added
advantage of redirecting any error output to the error channel. Here, we redirect the
error output (recall that file descriptor 2 always refers to stderr) to
the /dev/null special device file; /dev/null is a device file whose job is to act as a
sink (a black hole). Anything written to the null device just disappears forever! (Who
said there isn't magic on Unix?) Also, its complement is /dev/zero; the zero device
is a source – an infinite source of zeros. Reading from it returns zeroes (the first ASCII
character, not numeric 0); it has no end-of-file!

One tool to do one task
In the Unix design, one tries to avoid creating a Swiss Army knife; instead, one
creates a tool for a very specific, designated purpose and for that one purpose only.
No ifs, no buts; no cruft, no clutter. This is design simplicity at its best.

"Simplicity is the ultimate sophistication."

- Leonardo da Vinci

Take a common example: when working on the Linux CLI (command-line interface),
you would like to figure out which of your locally mounted filesystems has the most
available (disk) space.

Linux System Architecture Chapter 1

[16]

We can get the list of locally mounted filesystems by an appropriate switch (just df
would do as well):

$ df --local
Filesystem 1K-blocks Used Available Use% Mounted on
rootfs 20640636 1155492 18436728 6% /
udev 10240 0 10240 0% /dev
tmpfs 51444 160 51284 1% /run
tmpfs 5120 0 5120 0% /run/lock
tmpfs 102880 0 102880 0% /run/shm
$

To sort the output, one would need to first save it to a file; one could use a temporary
file for this purpose, tmp, and then sort it, using the sort utility, of course. Finally,
we delete the offending temporary file. (Yes, there's a better way, piping; refer to
the, Combine tools seamlessly section)

Note that the available space is the fourth column, so we sort accordingly:

$ df --local > tmp
$ sort -k4nr tmp
rootfs 20640636 1155484 18436736 6% /
tmpfs 102880 0 102880 0% /run/shm
tmpfs 51444 160 51284 1% /run
udev 10240 0 10240 0% /dev
tmpfs 5120 0 5120 0% /run/lock
Filesystem 1K-blocks Used Available Use% Mounted on
$

Whoops! The output includes the heading line. Let's first use the versatile sed
utility – a powerful non-interactive editor tool – to eliminate the first line, the header,
from the output of df:

$ df --local > tmp
$ sed --in-place '1d' tmp
$ sort -k4nr tmp
rootfs 20640636 1155484 18436736 6% /
tmpfs 102880 0 102880 0% /run/shm
tmpfs 51444 160 51284 1% /run
udev 10240 0 10240 0% /dev
tmpfs 5120 0 5120 0% /run/lock
$ rm -f tmp

So what? The point is, on Unix, there is no one utility to list mounted filesystems and
sort them by available space simultaneously.

Linux System Architecture Chapter 1

[17]

Instead, there is a utility to list mounted filesystems: df. It does a great job of it, with
option switches to choose from. (How does one know which options? Learn to use the
man pages, they're extremely useful.)

There is a utility to sort text: sort. Again, it's the last word in sorting text, with plenty
of option switches to choose from for pretty much every conceivable sort one might
require.

The Linux man pages: man is short for manual; on a Terminal
window, type man man to get help on using man. Notice the manual
is divided into 9 sections. For example, to get the manual page on
the stat system call, type man 2 stat as all system calls are in
section 2 of the manual. The convention used is cmd or API; thus,
we refer to it as stat(2).

As expected, we obtain the results. So what exactly is the point? It's this: we used
three utilities, not one. df , to list the mounted filesystems (and their related
metadata), sed, to eliminate the header line, and sort, to sort whatever input its
given (in any conceivable manner).

df can query and list mounted filesystems, but it cannot sort them. sort can sort text;
it cannot list mounted filesystems.

Think about that for a moment.

Combine them all, and you get more than the sum of its parts! Unix tools typically do
one task and they do it to its logical conclusion; no one does it better!

Having said this, I would like to point out – a tiny bit sheepishly –
the highly renowned tool Busybox. Busybox
(http://busybox.net) is billed as The Swiss Army Knife of
Embedded Linux. It is indeed a very versatile tool; it has its place in
the embedded Linux ecosystem – precisely because it would be too
expensive on an embedded box to have separate binary executables
for each and every utility (and it would consume more RAM).
Busybox solves this problem by having a single binary executable
(along with symbolic links to it from each of its applets, such as ls,
ps, df, and sort).
So, nevertheless, besides the embedded scenario and all the resource
limitations it implies, do follow the One tool to do one task rule!

Linux System Architecture Chapter 1

[18]

Three standard I/O channels
Several popular Unix tools (technically, filters) are, again, deliberately designed to
read their input from a standard file descriptor called standard input (stdin) –
possibly modify it, and write their resultant output to a standard file
descriptor standard output (stdout). Any error output can be written to a separate
error channel called standard error (stderr).

In conjunction with the shell's redirection operators (> for output-redirection and <
for input-redirection, 2> for stderr redirection), and even more importantly with
piping (refer section, Combine tools seamlessly), this enables a program designer to
highly simplify. There's no need to hardcode (or even softcode, for that matter) input
and output sources or sinks. It just works, as expected.

Let's review a couple of quick examples to illustrate this important point.

Word count
How many lines of source code are there in the C netcat.c source file I
downloaded? (Here, we use a small part of the popular open source netcat utility
code base.) We use the wc utility. Before we go further, what's wc? word count (wc) is
a filter: it reads input from stdin, counts the number of lines, words, and characters in
the input stream, and writes this result to its stdout. Further, as a convenience, one
can pass filenames as parameters to it; passing the -l option switch has wc only print
the number of lines:

$ wc -l src/netcat.c
618 src/netcat.c
$

Here, the input is a filename passed as a parameter to wc.

Linux System Architecture Chapter 1

[19]

Interestingly, we should by now realize that if we do not pass it any parameters, wc
would read its input from stdin, which by default is the keyboard device. For
example is shown as follows:

$ wc -l
hey, a small
quick test
 of reading from stdin
by wc!
^D
4
$

Yes, we typed in 4 lines to stdin; thus the result is 4, written to stdout – the terminal
device by default.

Here is the beauty of it:

$ wc -l < src/netcat.c > num
$ cat num
618
$

As we can see, wc is a great example of a Unix filter.

cat
Unix, and of course Linux, users learn to quickly get familiar with the daily-use cat
utility. At first glance, all cat does is spit out the contents of a file to the terminal.

For example, say we have two plain text files, myfile1.txt and myfile2.txt:

$ cat myfile1.txt
Hello,
Linux System Programming,
World.
$ cat myfile2.txt
Okey dokey,
bye now.
$

Okay. Now check this out:

$ cat myfile1.txt myfile2.txt
Hello,
Linux System Programming,

Linux System Architecture Chapter 1

[20]

World.
Okey dokey,
bye now.
$

Instead of needing to run cat twice, we ran it just once, by passing the two filenames
to it as parameters.

In theory, one can pass any number of parameters to cat: it will use them all, one by
one!

Not just that, one can use shell wildcards too (* and ?; in reality, the shell will first
expand the wildcards, and pass on the resultant path names to the program being
invoked as parameters):

$ cat myfile?.txt
Hello,
Linux System Programming,
World.
Okey dokey,
bye now.
$

This, in fact, illustrates another key point: any number of parameters or none is
considered the right way to design a program. Of course, there are exceptions to
every rule: some programs demand mandatory parameters.

Wait, there's more. cat too, is an excellent example of a Unix filter (recall: a filter is a
program that reads from its standard input, modifies its input in some manner, and
writes the result to its standard output).

So, quick quiz, if we just run cat with no parameters, what would happen?
Well, let's try it out and see:

$ cat
hello,
hello,
oh cool
oh cool
it reads from stdin,
it reads from stdin,
and echoes whatever it reads to stdout!
and echoes whatever it reads to stdout!
ok bye
ok bye
^D
$

Linux System Architecture Chapter 1

[21]

Wow, look at that: cat blocks (waits) at its stdin, the user types in a string and
presses the Enter key, cat responds by copying its stdin to its stdout – no surprise
there, as that's the job of cat in a nutshell!

One realizes the commands shown as follows:

cat fname is the same as cat < fname
cat > fname creates or overwrites the fname file

There's no reason we can't use cat to append several files together:

$ cat fname1 fname2 fname3 > final_fname
$

There's no reason this must be done with only plain text files; one can join together
binary files too.

In fact, that's what the utility does – it concatenates files. Thus its name; as is the norm
on Unix, is highly abbreviated – from concatenate to just cat. Again, clean and
elegant – the Unix way.

cat shunts out file contents to stdout, in order. What if one wants to
display a file's contents in reverse order (last line first)? Use the
Unix tac utility – yes, that's cat spelled backward!

Also, FYI, we saw that cat can be used to efficiently join files. Guess
what: the split (1) utility can be used to break a file up into
pieces.

Combine tools seamlessly
We just saw that common Unix utilities are often designed as filters, giving them the
ability to read from their standard input and write to their standard output. This
concept is elegantly extended to seamlessly combine together multiple utilities, using
an IPC mechanism called a pipe.

Also, we recall that the Unix philosophy embraces the do one task only design. What
if we have one program that does task A and another that does task B and we want to
combine them? Ah, that's exactly what pipes do! Refer to the following code:

prg_does_taskA | prg_does_taskB

Linux System Architecture Chapter 1

[22]

A pipe essentially is redirection performed twice: the output of the
left-hand program becomes the input to the right-hand program. Of
course, this implies that the program on the left must write to
stdout, and the program on the read must read from stdin.

An example: sort the list of mounted filesystems by space available (in reverse order).

As we have already discussed this example in the One tool to do one task section, we
shall not repeat the same information.

Option 1: Perform the following code using a temporary file (refer section, One tool to
do one task):

$ df --local | sed '1d' > tmp
$ sed --in-place '1d' tmp
$ sort -k4nr tmp
rootfs 20640636 1155484 18436736 6% /
tmpfs 102880 0 102880 0% /run/shm
tmpfs 51444 160 51284 1% /run
udev 10240 0 10240 0% /dev
tmpfs 5120 0 5120 0% /run/lock
$ rm -f tmp

Option 2 : Using pipes—clean and elegant:

$ df --local | sed '1d' | sort -k4nr
rootfs 20640636 1155492 18436728 6% /
tmpfs 102880 0 102880 0% /run/shm
tmpfs 51444 160 51284 1% /run
udev 10240 0 10240 0% /dev
tmpfs 5120 0 5120 0% /run/lock
$

Not only is this elegant, it is also far superior performance-wise, as writing to
memory (the pipe is a memory object) is much faster than writing to disk.

One can extend this notion and combine multiple tools over multiple pipes; in effect,
one can build a super tool from several regular tools by combining them.

Linux System Architecture Chapter 1

[23]

As an example: display the three processes taking the most (physical) memory; only
display their PID, virtual size (VSZ), resident set size (RSS) (RSS is a fairly accurate
measure of physical memory usage), and the name:

$ ps au | sed '1d' | awk '{printf("%6d %10d %10d %-32s\n", $2, $5, $6,
$11)}' | sort -k3n | tail -n3
 10746 3219556 665252 /usr/lib64/firefox/firefox
 10840 3444456 1105088 /usr/lib64/firefox/firefox
 1465 5119800 1354280 /usr/bin/gnome-shell
$

Here, we've combined five utilities, ps, sed, awk, sort, and tail, over four pipes.
Nice!

Another example: display the process, not including daemons*, taking up the most
memory (RSS):

ps aux | awk '{if ($7 != "?") print $0}' | sort -k6n | tail -n1

A daemon is a system background process; we'll cover this concept
in Daemon Process here: https:/ /www. packtpub. com/sites/
default/ files/ downloads/ Daemon_ Processes. pdf.

Plain text preferred
Unix programs are generally designed to work with text as it's a universal interface.
Of course, there are several utilities that do indeed operate on binary objects (such as
object and executable files); we aren't referring to them here. The point is this: Unix
programs are designed to work on text as it simplifies the design and architecture of
the program.

A common example: an application, on startup, parses a configuration file. The
configuration file could be formatted as a binary blob. On the other hand, having it as
a plain text file renders it easily readable (invaluable!) and therefore easier to
understand and maintain. One might argue that parsing binary would be faster.
Perhaps to some extent this is so, but consider the following:

With modern hardware, the difference is probably not significant
A standardized plain text format (such as XML) would have optimized
code to parse it, yielding both benefits

Remember, simplicity is key!

https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf
https://www.packtpub.com/sites/default/files/downloads/Daemon_Processes.pdf

Linux System Architecture Chapter 1

[24]

CLI, not GUI
The Unix OS, and all its applications, utilities, and tools, were always built to be used
from a command-line-interface (CLI), typically, the shell. From the 1980s onward,
the need for a Graphical User Interface (GUI) became apparent.

Robert Scheifler of MIT, considered the chief design architect behind the X Window
System, built an exceedingly clean and elegant architecture, a key component of
which is this: the GUI forms a layer (well, actually, several layers) above the OS,
providing libraries for GUI clients, that is, applications.

The GUI was never designed to be intrinsic to applications or the
OS—it's always optional.

This architecture still holds up today. Having said that, especially on embedded
Linux, performance reasons are seeing the advent of newer architectures, such as the
frame buffer and Wayland. Also, though Android, which uses the Linux kernel,
necessitates a GUI for the end user, the system developer's interface to Android, ADB,
is a CLI.

A huge number of production-embedded and server Linux systems run purely on
CLI interfaces. The GUI is almost like an add-on feature, for the end user's ease of
operation.

Wherever appropriate, design your tools to work in the CLI
environment; adapting it into a GUI at a later point is then
straightforward.
Cleanly and carefully separating the business logic of the project or
product from its GUI is a key to good design.

Modular, designed to be repurposed by others
From its very early days, the Unix OS was deliberately designed and coded with the
tacit assumption that multiple programmers would work on the system. Thus, the
culture of writing clean, elegant, and understandable code, to be read and worked
upon by other competent programmers, was ingrained.

Linux System Architecture Chapter 1

[25]

Later, with the advent of the Unix wars, proprietary and legal concerns overrode this
sharing model. Interestingly, history shows that the Unix's were fading in relevance
and industry use, until the timely advent of none other than the Linux OS – an open
source ecosystem at its very best! Today, the Linux OS is widely acknowledged as the
most successful GNU project. Ironic indeed!

Provide mechanisms, not policies
Let's understand this principle with a simple example.

When designing an application, you need to have the user enter a login name and
password. The function that performs the work of getting and checking the password
is called, let's say, mygetpass(). It's invoked by the mylogin() function: mylogin()
→ mygetpass().

Now, the protocol to be followed is this: if the user gets the password wrong three
times in a row, the program should not allow access (and should log the case). Fine,
but where do we check this?

The Unix philosophy: do not implement the logic, if the password is specified
wrongly three times, abort in the mygetpass() function. Instead, just have
mygetpass() return a Boolean (true when the password is right, false when the
password is wrong), and have the mylogin() calling function implement whatever
logic is required.

Pseudocode
The following is the wrong approach:

mygetpass()
{
 numtries=1

 <get the password>
 if (password-is-wrong) {
 numtries ++
 if (numtries >= 3) {
 <write and log failure message>
 <abort>
 }
 }
 <password correct, continue>

Linux System Architecture Chapter 1

[26]

}
mylogin()
{
 mygetpass()
}

Now let's take a look at the right approach: the Unix way! Refer to the following code:

mygetpass()
{
 <get the password>

 if (password-is-wrong)
 return false;

 return true;
}
mylogin()
{
 maxtries = 3

 while (maxtries--) {
 if (mygetpass() == true)
 <move along, call other routines>
 }

 // If we're here, we've failed to provide the
 // correct password
 <write and log failure message>
 <abort>
}

The job of mygetpass() is to get a password from the user and check whether it's
correct; it returns success or failure to the caller – that's it. That's the mechanism. It is
not its job to decide what to do if the password is wrong – that's the policy, and left to
the caller.

Now that we've covered the Unix philosophy in a nutshell, what are the important
takeaways for you, the system developer on Linux?

Learning from, and following, the Unix philosophy when designing and
implementing your applications on the Linux OS will provide a huge payoff. Your
application will do the following:

Be a natural fit on the system; this is very important
Have greatly reduced complexity

Linux System Architecture Chapter 1

[27]

Have a modular design that is clean and elegant
Be far more maintainable

Linux system architecture
In order to clearly understand the Linux system architecture, one needs to first
understand a few important concepts: the processor Application Binary Interface
(ABI), CPU privilege levels, and how these affect the code we write. Accordingly, and
with a few code examples, we'll delve into these here, before diving into the details of
the system architecture itself.

Preliminaries
If one is posed the question, "what is the CPU for?", the answer is pretty obvious: the
CPU is the heart of the machine – it reads in, decodes, and executes machine
instructions, working on memory and peripherals. It does this by incorporating
various stages.

Very simplistically, in the Instruction Fetch stage, it reads in machine instructions
(which we represent in various human-readable ways – in hexadecimal, assembly,
and high-level languages) from memory (RAM) or CPU cache. Then, in the
Instruction Decode phase, it proceeds to decipher the instruction. Along the way, it
makes use of the control unit, its register set, ALU, and memory/peripheral interfaces.

The ABI
Let's imagine that we write a C program, and run it on the machine.

Well, hang on a second. C code cannot possibly be directly deciphered by the CPU; it
must be converted into machine language. So, we understand that on modern
systems we will have a toolchain installed – this includes the compiler, linker, library
objects, and various other tools. We compile and link the C source code, converting it
into an executable format that can be run on the system.

Linux System Architecture Chapter 1

[28]

The processor Instruction Set Architecture (ISA) – documents the machine's
instruction formats, the addressing schemes it supports, and its register model. In
fact, CPU Original Equipment Manufacturers (OEMs) release a document that
describes how the machine works; this document is generally called the ABI. The ABI
describes more than just the ISA; it describes the machine instruction formats, the
register set details, the calling convention, the linking semantics, and the executable
file format, such as ELF. Try out a quick Google for x86 ABI – it should reveal
interesting results.

The publisher makes the full source code for this book available on
their website; we urge the reader to perform a quick Git clone on the
following URL. Build and try it: https:/ /github. com/
PacktPublishing/ Hands- on-System- Programming- with- Linux.

Let's try this out. First, we write a simple Hello, World type of C program:

 $ cat hello.c
 /*
 * hello.c
 *
 **
 * This program is part of the source code released for the book
 * "Linux System Programming"
 * (c) Kaiwan N Billimoria
 * Packt Publishers
 *
 * From:
 * Ch 1 : Linux System Architecture
 **
 * A quick 'Hello, World'-like program to demonstrate using
 * objdump to show the corresponding assembly and machine
 * language.
 */
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(void)
{
 int a;

 printf("Hello, Linux System Programming, World!\n");
 a = 5;
 exit(0);
}
$

https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux
https://github.com/PacktPublishing/Hands-on-System-Programming-with-Linux

Linux System Architecture Chapter 1

[29]

We build the application via the Makefile, with make. Ideally, the
code must compile with no warnings:

$ gcc -Wall -Wextra hello.c -o hello
hello.c: In function ‘main':
hello.c:23:6: warning: variable ‘a' set but not used [-Wunused-but-set-
variable]
 int a;
 ^
$

Important! Do not ignore compiler warnings with production code.
Strive to get rid of all warnings, even the seemingly trivial ones; this
will help a great deal with correctness, stability, and security.

In this trivial example code, we understand and anticipate the unused
variable warning that gcc emits, and just ignore it for the purpose of this demo.

The exact warning and/or error messages you see on your system
could differ from what you see here. This is because my Linux
distribution (and version), compiler/linker, library versions, and
perhaps even CPU, may differ from yours. I built this on a x86_64
box running the Fedora 27/28 Linux distribution.

Similarly, we build the debug version of the hello program (again, ignoring the
warning for now), and run it:

$ make hello_dbg
[...]
$./hello_dbg
Hello, Linux System Programming, World!
$

We use the powerful objdump utility to see the intermixed source-assembly-machine
language of our program (objdump's --source option switch
 -S, --source Intermix source code with disassembly):

$ objdump --source ./hello_dbg
./hello_dbg: file format elf64-x86-64

Disassembly of section .init:

0000000000400400 <_init>:
 400400: 48 83 ec 08 sub $0x8,%rsp

Linux System Architecture Chapter 1

[30]

[...]

int main(void)
{
 400527: 55 push %rbp
 400528: 48 89 e5 mov %rsp,%rbp
 40052b: 48 83 ec 10 sub $0x10,%rsp
 int a;

 printf("Hello, Linux System Programming, World!\n");
 40052f: bf e0 05 40 00 mov $0x4005e0,%edi
 400534: e8 f7 fe ff ff callq 400430 <puts@plt>
 a = 5;
 400539: c7 45 fc 05 00 00 00 movl $0x5,-0x4(%rbp)
 exit(0);
 400540: bf 00 00 00 00 mov $0x0,%edi
 400545: e8 f6 fe ff ff callq 400440 <exit@plt>
 40054a: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)

[...]

$

The exact assembly and machine code you see on your system will,
in all likelihood, differ from what you see here; this is because my
Linux distribution (and version), compiler/linker, library versions,
and perhaps even CPU, may differ from yours. I built this on a
x86_64 box running Fedora Core 27.

Alright. Let's take the line of source code a = 5; where, objdump reveals the
corresponding machine and assembly language:

 a = 5;
 400539: c7 45 fc 05 00 00 00 movl $0x5,-0x4(%rbp)

We can now clearly see the following:

C source Assembly language Machine instructions
a = 5; movl $0x5,-0x4(%rbp) c7 45 fc 05 00 00 00

So, when the process runs, at some point it will fetch and execute the machine
instructions, producing the desired result. Indeed, that's exactly what a
programmable computer is designed to do!

Linux System Architecture Chapter 1

[31]

Though we have shown examples of displaying (and even writing a
bit of) assembly and machine code for the Intel CPU, the concepts
and principles behind this discussion hold up for other CPU
architectures, such as ARM, PPC, and MIPS. Covering similar
examples for all these CPUs goes beyond the scope of this book;
however, we urge the interested reader to study the processor
datasheet and ABI, and try it out.

Accessing a register's content via inline assembly
Now that we've written a simple C program and seen its assembly and machine code,
let's move on to something a little more challenging: a C program with inline
assembly to access the contents of a CPU register.

Details on assembly-language programming are outside the scope of
this book; refer to the Further reading section on the GitHub
repository.

x86_64 has several registers; let's just go with the ordinary RCX register for this
example. We do make use of an interesting trick: the x86 ABI calling convention states
that the return value of a function will be the value placed in the accumulator, that is,
RAX for the x86_64. Using this knowledge, we write a function that uses inline
assembly to place the content of the register we want into RAX. This ensures that this
is what it will return to the caller!

Assembly micro-basics includes the following:

at&t syntax:
 movq <src_reg>, <dest_reg>
Register : prefix name with %
Immediate value : prefix with $

For more, see the Further reading section on the GitHub repository.

Let's take a look at the following code:

$ cat getreg_rcx.c
/*
 * getreg_rcx.c
 *
 **
 * This program is part of the source code released for the book

Linux System Architecture Chapter 1

[32]

 * "Linux System Programming"
 * (c) Kaiwan N Billimoria
 * Packt Publishers
 *
 * From:
 * Ch 1 : Linux System Architecture
 **
 * Inline assembly to access the contents of a CPU register.
 * NOTE: this program is written to work on x86_64 only.
 */
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

typedef unsigned long u64;

static u64 get_rcx(void)
{
 /* Pro Tip: x86 ABI: query a register's value by moving its value
into RAX.
 * [RAX] is returned by the function! */
 __asm__ __volatile__(
 "push %rcx\n\t"
 "movq $5, %rcx\n\t"
 "movq %rcx, %rax");
 /* at&t syntax: movq <src_reg>, <dest_reg> */
 __asm__ __volatile__("pop %rcx");
}

int main(void)
{
 printf("Hello, inline assembly:\n [RCX] = 0x%lx\n",
 get_rcx());
 exit(0);
}
$ gcc -Wall -Wextra getreg_rcx.c -o getreg_rcx
getreg_rcx.c: In function ‘get_rcx':
getreg_rcx.c:32:1: warning: no return statement in function returning
non-void [-Wreturn-type]
 }
 ^
$./getreg_rcx
Hello, inline assembly:
 [RCX] = 0x5
$

There; it works as expected.

	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Linux System Architecture
	Technical requirements
	Linux and the Unix operating system
	The Unix philosophy in a nutshell
	Everything is a process – if it's not a process, it's a file
	One tool to do one task
	Three standard I/O channels
	Word count
	cat

	Combine tools seamlessly
	Plain text preferred
	CLI, not GUI
	Modular, designed to be repurposed by others
	Provide mechanisms, not policies
	Pseudocode

	Linux system architecture
	Preliminaries
	The ABI
	Accessing a register's content via inline assembly

