

ASP.NET Core 3 and
Angular 9
Third Edition

Full stack web development with .NET Core 3.1
and Angular 9

Valerio De Sanctis

BIRMINGHAM - MUMBAI

ASP.NET Core 3 and Angular 9
Third Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Ashwin Nair
Acquisition Editor: Larissa Pinto
Content Development Editor: Aamir Ahmed
Senior Editor: Hayden Edwards
Technical Editor: Sachin Sunilkumar
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Arvindkumar Gupta

First published: October 2016
Second edition: November 2017
Third edition: February 2020

Production reference: 1130220

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-216-5

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Valerio De Sanctis is a skilled IT professional with more than 15 years of experience
in lead programming, web-based development, and project management using
ASP.NET, PHP, and Java. He has held senior positions at a range of financial and
insurance companies, most recently serving as Chief Technology Officer, Chief
Security Officer, and Chief Operating Officer at a leading after-sales and IT service
provider for multiple top-tier life and non-life insurance groups.

During the course of his career, Valerio has helped many private organizations to
implement and maintain .NET based solutions, working side by side with many IT
industry experts and leading several frontend, backend, and UX development teams.
He designed the architecture and actively oversaw the development of a wide
number of corporate-level web application projects for high-profile clients, customers,
and partners, including the London Stock Exchange Group, Zurich Insurance Group,
Allianz, Generali, Harmonie Mutuelle, Honda Motor, FCA Group, Luxottica, ANSA,
Saipem, ENI, Enel, Terna, Banzai Media, Virgilio.it, Repubblica.it, and Corriere.it.

He is an active member of the Stack Exchange network, providing advice and tips for
.NET, JavaScript, HTML5, and web-related topics on the StackOverflow, ServerFault,
and SuperUser communities. Most of his projects and code samples are available
under open source licenses on GitHub, BitBucket, NPM, CocoaPods, JQuery Plugin
Registry, and WordPress Plugin Repository. He's also a Microsoft Most Valuable
Professional (MVP) for Developer Technologies, an annual award that recognizes
exceptional technology community leaders worldwide who actively share their high-
quality, real-world expertise with users and Microsoft.

Since 2014, he has operated an IT-oriented, web-focused blog at
www.ryadel.com, featuring news, reviews, code samples, and guides designed to
help developers and tech enthusiasts from all around the world. He has written
various books on web development, many of which have become best-sellers on
Amazon, with tens of thousands of copies sold worldwide.

You can reach him on LinkedIn at https:/ ​/​www. ​linkedin. ​com/ ​in/​darkseal/ ​

https://www.linkedin.com/in/darkseal/
https://www.linkedin.com/in/darkseal/
https://www.linkedin.com/in/darkseal/
https://www.linkedin.com/in/darkseal/
https://www.linkedin.com/in/darkseal/
https://www.linkedin.com/in/darkseal/
https://www.linkedin.com/in/darkseal/
https://www.linkedin.com/in/darkseal/
https://www.linkedin.com/in/darkseal/
https://www.linkedin.com/in/darkseal/
https://www.linkedin.com/in/darkseal/
https://www.linkedin.com/in/darkseal/
https://www.linkedin.com/in/darkseal/
https://www.linkedin.com/in/darkseal/

About the reviewers
Anand Narayanaswamy works as a freelance writer and reviewer based in
Thiruvananthapuram. He has had articles published in leading print magazines and
on online tech portals. He was the recipient of the Microsoft MVP award from 2002 to
2011. He is currently a Windows Insider MVP and also part of the prestigious
ASPInsiders group.

Anand has also worked as a technical editor and reviewer for several publishers and
authored Community Server Quickly for Packt Publishing. He has contributed content
for Digit Magazine and Manorama Year Book.

Anand works as an Unacademy educator and also runs his own blogs – Netans and
Learnxpress. He is active on social media and can be reached at @visualanand on
Twitter and @netanstech on Instagram.

I would like to thank God for giving me the power to work daily. I would also like to
thank Amrita Venugopal, Kinjal Bari, and Manthan Patel for their excellent
support and patience. The manner in which Packt editors handle reviewers from the
start of a project is highly impressive. I am also grateful to my father, mother, and
brother for their constant support and encouragement.

Santosh Yadav is from Pune, India, and holds a bachelor's degree in computing. He
has more than 11 years' experience as a developer, and has worked with multiple
technologies, including .NET, Node.js, and Angular. He is a Google Developer Expert
in Angular and web technologies. He is the author of the ng deploy library for Netlify
and a writer for Angular In Depth. He is also a speaker and organizer for the Pune
Tech Meetup, and a contributor to projects including Angular and NgRx.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Ready 8
Technical requirements 9
Two players, one goal 9

The ASP.NET Core revolution 10
ASP.NET Core 1.x 11
ASP.NET Core 2.x 12
ASP.NET Core 3.x 15

What's new in Angular? 17
GetAngular 17
AngularJS 18
Angular 2 19
Angular 4 21
Angular 5 22
Angular 6 23
Angular 7 23
Angular 8 25
Angular 9 26

Reasons for choosing .NET Core and Angular 27
A full-stack approach 29
SPAs, NWAs, and PWAs 30

Single-page application 31
Native web application 32
Progressive web application 32
Product owner expectations 35

A sample SPA project 37
Not your usual Hello World! 38

Preparing the workspace 38
Disclaimer – do (not) try this at home 39

The broken code myth 39
Stay hungry, stay foolish, yet be responsible as well 41

Setting up the project 42
Installing the .NET Core SDK 42
Checking the SDK version 43
Creating the .NET Core and Angular project 44
Opening the new project in Visual Studio 44
Performing a test run 47

Summary 48
Suggested topics 49
References 49

Table of Contents

[ii]

Chapter 2: Looking Around 52
Technical requirements 53
Solution overview 53
The .NET Core back-end 54

Razor Pages 55
Controllers 55
Configuration files 57

Program.cs 57
Web host versus web server 58

Startup.cs 60
appsettings.json 66

The Angular front-end 67
Workspace 68

angular.json 68
package.json 69

Upgrading (or downgrading) Angular 70
Upgrading (or downgrading) the other packages 72

tsconfig.json 74
Other workspace-level files 76

The /ClientApp/src/ folder 76
The /app/ folder 78

AppModule 78
Server-side AppModule for SSR 79
AppComponent 80
Other components 80

Testing the app 81
HomeComponent 81
NavMenuComponent 82
CounterComponent 83

The specs.ts file(s) 84
Our first app test 84

Getting to work 86
Static file caching 86

A blast from the past 87
Back to the future 88
Testing it out 90

The strongly-typed approach(es) 92
Client app cleanup 93

Trimming down the Component list 93
The AppModule source code 96
Updating the NavMenu 96

Summary 99
Suggested topics 100
References 100

Chapter 3: Front-end and Back-end Interactions 101
Technical requirements 102
Introducing .NET Core health checks 102

Table of Contents

[iii]

Adding the HealthChecks middleware 103
Adding an Internet Control Message Protocol (ICMP) check 105

Possible outcomes 106
Creating an ICMPHealthCheck class 106
Adding the ICMPHealthCheck to the pipeline 108

Improving the ICMPHealthCheck class 109
Adding parameters and response messages 109
Updating the middleware setup 111
Implementing a custom output message 112

About health check responses and HTTP status codes 114
Configuring the output message 114

Health checks in Angular 115
Creating the Angular Component 116

health-check.component.ts 117
Imports and modules 118
DI 121
ngOnInit (and other lifecycle hooks) 122
Constructor 124
HttpClient 125
Observables 127
Interfaces 128

health-check.component.html 129
health-check.component.css 131

Adding the Component to the Angular app 132
AppModule 132
NavMenuComponent 133
Testing it out 134

Summary 134
Suggested topics 135
References 135

Chapter 4: Data Model with Entity Framework Core 137
Technical requirements 138
The WorldCities web app 138

Reasons to use a Data Server 140
The data source 142
The data model 144

Introducing Entity Framework Core 144
Installing Entity Framework Core 146
The SQL Server Data Provider 148

DBMS licensing models 148
What about Linux? 149
SQL Server alternatives 149

Data modeling approaches 149
Model-First 150

Pros 150
Cons 151

Database-First 151
Pros 152

Table of Contents

[iv]

Cons 152
Code-First 152

Pros 153
Cons 153

Making a choice 154
Creating the entities 154

Defining the entities 155
The City entity 157
Country 159

Defining relationships 161
Adding the Country property to the City entity class 162
Adding the Cities property to the Country entity class 163

Entity Framework Core loading pattern 163
Getting a SQL Server 165

Installing SQL Server 2019 166
Creating a SQL Database on Azure 169

Setting up a SQL Database 170
Configuring the instance 173

Configuring the database 177
Creating the WorldCities database 178
Adding the WorldCities login 179
Mapping the login to the database 179

Creating the database using Code-First 180
Setting up the DbContext 181
Database initialization strategies 182
Updating the appsettings.json file 183
Creating the database 184

Updating Startup.cs 184
Adding the initial migration 185

Updating the database 187
The "No executable found matching command dotnet-ef" error 189
Understanding migrations 190

Is data migration required? 191
Populating the database 191

Implementing SeedController 192
Importing the Excel file 193

Entity Controllers 199
CitiesController 200
CountriesController 203

Summary 204
Suggested topics 205
References 205

Chapter 5: Fetching and Displaying Data 207
Technical requirements 207
Fetching data 208

Requests and responses 208
JSON conventions and defaults 208

Table of Contents

[v]

A (very) long list 210
city.ts 211
cities.component.ts 211
cities.component.html 212

The [hidden] attribute 212
cities.component.css 214
app.module.ts 214
nav-component.html 215

Serving data with Angular Material 217
MatTableModule 219
MatPaginatorModule 224

Client-side paging 224
Server-side paging 227

CitiesController 227
ApiResult 229
CitiesComponent 234

MatSortModule 238
Extending ApiResult 239
Installing System.Linq.Dynamic.Core 243

What is LINQ? 244
Linq.Dynamic.Core pros and cons 245
Preventing SQL injections 246

Updating CitiesController 249
Updating the Angular app 249

angular-material.module.ts 250
cities.component.ts 250
cities.component.html 252

Adding filtering 255
Extending ApiResult (again) 255
CitiesController 261
CitiesComponent 262
CitiesComponent template (HTML) file 264
CitiesComponent style (CSS) file 265
AngularMaterialModule 265

Adding the countries to the loop 267
.NET Core 268

CountriesController 268
An odd JSON naming issue 268

Angular 271
country.ts 272
countries.component.ts 272
countries.component.html 274
countries.component.css 275
AppModule 276
NavComponent 277
Testing CountriesComponent 278

Summary 279
Suggested topics 280

.NET Core 280

Table of Contents

[vi]

Angular 280
References 280

Chapter 6: Forms and Data Validation 282
Technical requirements 283
Exploring Angular forms 284

Forms in Angular 284
Reasons to use forms 286
Template-Driven Forms 287

The pros 288
The cons 289

Model-Driven/Reactive Forms 289
Building our first Reactive Form 293

ReactiveFormsModule 293
CityEditComponent 295

city-edit.component.ts 296
city-edit.component.html 299
city-edit.component.css 301

Adding the navigation link 302
app.module.ts 302
cities.component.html 303

Adding a new city 305
Extending the CityEditComponent 306
Adding the "Add a new City" button 309

Adding a new route 310
HTML select 312
Angular material select (MatSelectModule) 317

Understanding data validation 320
Template-driven validation 321

Safe Navigation Operator 322
Model-Driven validation 323

Our first validators 324
Server-side validation 329

DupeCityValidator 332
city-edit.component.ts 332
CitiesController 334
city-edit.component.html 335
Testing it out 336
Observables and RxJS operators 337
Performance issues 338

Introducing the FormBuilder 338
Creating the CountryEditComponent 339

country-edit.component.ts 339
isDupeField validator 343

IsDupeField server-side API 344
An alternative approach using Linq.Dynamic 345

country-edit.component.html 346
country-edit.component.css 348

Table of Contents

[vii]

AppModule 349
countries.component.ts 351

Testing the CountryEditComponent 352
Summary 356
Suggested topics 356
References 357

Chapter 7: Code Tweaks and Data Services 358
Technical requirements 359
Optimizations and tweaks 359

Template improvements 360
Form validation shortcuts 360

Class inheritance 362
Implementing a BaseFormComponent 362
Extending CityEditComponent 364
Extending CountryEditComponent 366

Bug fixes and improvements 366
Validating lat and lon 366

city-edit.component.ts 367
city-edit.component.html 368

Adding the number of cities 370
CountriesController 370
Creating the CountryDTO class 373
Angular front-end updates 374

DTO classes – should we really use them? 378
Separation of concerns 379
Security considerations 380
DTO classes versus anonymous types 380
Securing Entities 381

[NotMapped] and [JsonIgnore] attributes 382
Adding the country name 385

CitiesController 385
Angular front-end updates 386

Data Services 390
XMLHttpRequest versus Fetch (vs HttpClient) 390

XMLHttpRequest 391
Fetch 392
HttpClient 394

Building a Data Service 396
Creating the BaseService 397

TypeScript access modifiers 399
Adding the common interface methods 399

Type variables and generic types – <T> and <any> 400
Why return Observables and not JSON? 401

Creating the CityService 401
Implementing the CityService 403

AppModule 404
CitiesComponent 405
CityEditComponent 406

Table of Contents

[viii]

Implementing loadCountries() and IsDupeCity() in CityService 408
Creating the CountryService 410

CountriesComponent 412
CountryEditComponent 414

Summary 418
Suggested topics 418
References 418

Chapter 8: Back-end and Front-end Debugging 420
Technical requirements 421
Back-end debugging 421

Windows or Linux? 422
The basics 422
Conditional breakpoints 423

Conditions 424
Actions 425
Testing the conditional breakpoint 426

The Output window 427
Configuring the Output window 428

Debugging EF Core 429
The GetCountries() SQL query 430

Getting the SQL code programmatically 431
Implementing the ToSql() method 433
Using the #if preprocessor 436

Front-end debugging 436
Visual Studio JavaScript debugging 437

JavaScript source maps 439
Browser developer tools 439
Angular form debugging 443

A look at the Form Model 443
The pipe operator 445
Reacting to changes 445
The Activity Log 446

Testing the Activity Log 448
Extending the Activity Log 450

Client-side debugging 451
Summary 452
Suggested topics 453
References 453

Chapter 9: ASP.NET Core and Angular Unit Testing 454
Technical requirements 455
.NET Core unit tests 455

Creating the WorldCities.Test project 456
Moq 457
Microsoft.EntityFramework.InMemory 458
Adding the WorldCities dependency reference 459

Our first test 459

Table of Contents

[ix]

Arrange 461
Act 463
Assert 464
Executing the test 464

Using the CLI 465
Using the Visual Studio Test Explorer 465

Debugging tests 467
Test-Driven Development 469
Behavior-Driven Development 470

Angular unit tests 472
General concepts 474

Introducing the TestBed interface 474
Testing with Jasmine 475

Our first Angular test suite 475
The import section 476
The describe and beforeEach sections 477
Adding a mock CityService 478

Fake service class 479
Extending and overriding 479
Interface instance 479
Spy 479

Implementing the mock CityService 480
Alternative implementation using the interface approach 481

Configuring the fixture and the Component 482
Creating the title test 483
Creating the cities tests 484
Running the test suite 485

Summary 488
Suggested topics 489
References 489

Chapter 10: Authentication and Authorization 491
Technical requirements 492
To auth, or not to auth 493

Authentication 493
Third-party authentication 494

The rise and fall of OpenID 494
OpenID Connect 495

Authorization 496
Third-party authorization 496

Proprietary versus third-party 498
Proprietary auth with .NET Core 499

The ASP.NET Core Identity Model 501
Entity types 501

Setting up ASP.NET Core Identity 503
Adding the NuGet packages 503
Creating ApplicationUser 503
Extending ApplicationDbContext 504
Adjusting our unit tests 506

Table of Contents

[x]

Configuring the ASP.NET Core Identity middleware 507
Configuring IdentityServer 510

Updating the appSettings.Development.json file 512
Revising SeedController 512

Adding RoleManager and UserManager through DI 513
Defining the CreateDefaultUser() unit test 514
Implementing the CreateDefaultUsers() method 519
Rerunning the unit test 522

A word on async tasks, awaits, and deadlocks 523
Updating the database 525

Adding identity migration 526
Applying the migration 527

Updating the existing data model 527
Dropping and recreating the data model from scratch 530

Seeding the data 531
Authentication methods 533

Sessions 533
Tokens 535
Signatures 537
Two-factor 537
Conclusions 538

Implementing authentication in Angular 538
Creating the AuthSample project 539

Troubleshooting the AuthSample project 540
Exploring the Angular authorization APIs 542

Route Guards 544
Available Guards 545

HttpInterceptors 551
The authorization Components 553

LoginMenuComponent 553
LoginComponent 556
LogoutComponent 560

Testing registration and login 560
Implementing the Auth API in the WorldCities app 561

Importing the front-end Authorization APIs 562
AppModule 562
AppModule 562
NavMenuComponent 564

Adjusting the back-end code 565
Installing the ASP.NET Core Identity UI package 566

Customizing the default Identity UI 566
Mapping Razor Pages to EndpointMiddleware 567
Securing the back-end action methods 567

Testing login and registration 569
Summary 571
Suggested topics 572
References 572

Chapter 11: Progressive Web Apps 575

Table of Contents

[xi]

Technical requirements 576
PWA – distinctive features 576

Secure origin 578
Offline loading and Web App Manifest 578

Service workers versus HttpInterceptors 579
Introducing @angular/service-worker 580
The .NET Core PWA middleware alternative 580

Implementing the PWA requirements 581
Manual installation 582

Adding the @angular/service-worker npm package 582
Updating the angular.json file 583
Importing ServiceWorkerModule 583
Updating the index.html file 584
Adding the Web App Manifest file 585

Updating the Startup.cs file 588
Publishing the Web App Manifest file 589

Adding the favicon 590
Adding the ngsw-config.json file 591

Automatic installation 592
The Angular PNG icon set 594

Handling the offline status 594
Option 1 – the window's isonline/isoffline event 594
Option 2 – the Navigator.onLine property 595

Downsides of the JavaScript approaches 596
Option 3 – the ng-connection-service npm package 596

Installing ng-connection-service 597
Updating the app.component.ts file 598
Removing the isOnline.txt static file from the cache 600
Installing the ng-connection-service via NPM (alternate route) 601
Updating the app.component.html file 602

Cross-Request Resource Sharing 603
Testing the PWA capabilities 604

Using Visual Studio and IIS Express 605
Creating a Publish Profile 605
Copying the CLI-generated files 608
Testing out our PWAs 608

Installing the PWA 612
Alternative testing ways 614

Serving our PWA using http-server 614
Summary 615
Suggested topics 616
References 616

Chapter 12: Windows and Linux Deployment 618
Technical requirements 619
Getting ready for production 619

.NET Core deployment tips 620
The launchSettings.json file 620

Table of Contents

[xii]

Development, staging, and production environments 621
Rule(s) of thumb 623
Setting the environment in production 625
ASP.NET Core deployment modes 626

Framework-dependent deployment pros and cons 627
Self-contained deployment pros and cons 627
Framework-dependent executable pros and cons 628

Angular deployment tips 629
ng serve, ng build, and the package.json file 629
Differential loading 631
The angular.json configuration file 633
Automatic deployment 633
CORS policy 634

Windows deployment 634
Creating a Windows Server VM on MS Azure 635

Accessing the MS Azure portal 635
Adding and configuring a new VM 636
Setting the inbound security rules 640

Configuring the VM 641
Adding the IIS web server 642
Installing the ASP.NET Core Windows hosting bundle 644

Restarting IIS following ASP.NET Core runtime installation 645
Publishing and deploying the HealthCities app 645

Folder publish profile 645
FTP publish profile 646
Azure Virtual Machine publish profile 647

Configuring IIS 649
Adding an SSL certificate 650
Adding a new IIS website entry 651
Configuring the IIS application pool 653

Testing the HealthCheck web application 655
Updating the testing machine's HOST files 655
Testing the app with Google Chrome 656

Linux deployment 657
Creating a Linux CentOS VM on MS Azure 658

Add and configure the CentOS 7.7 VM 658
Setting the inbound security rules 660

Configuring the Linux VM 660
Connecting to the VM 661
Installing the ASP.NET runtime 662
Installing Nginx 663

Starting up Nginx 663
Checking the HTTP connection 664

Opening the 443 TCP port 665
firewalld 666
ufw 666

Adapting the WorldCities app 667
Adding the forwarded headers middleware 668
Checking the database connection string 668

Table of Contents

[xiii]

Publishing and deploying the WorldCities app 670
Creating the /var/www folder 671
Adding permissions 671
Copying the WorldCities publish folder 672

Configuring Kestrel and Nginx 674
Creating the self-signed SSL certificate 674
Configuring the Kestrel service 676

Why are we not serving the web app with Kestrel directly? 679
Configuring the Nginx reverse proxy 680

Updating the nginx.conf file 681
Testing the WorldCities application 682

Update the testing machine's HOST files 682
Testing the app with Google Chrome 683
Troubleshooting 684

Summary 685
Suggested topics 686
References 686

Other Books You May Enjoy 688

Index 691

Preface
ASP.NET Core is a free and open source modular web framework developed by
Microsoft that runs on top of the full .NET Framework (Windows) or .NET Core
(cross-platform). It has been made specifically for building efficient HTTP services
that can be reached and consumed by a massive range of clients, including web
browsers, mobile devices, smart TVs, web-based home automation tools, and more.

Angular is the successor of AngularJS, a world-renowned development framework
born with the aim of providing the coder with the toolbox that is needed to build
reactive and cross-platform web-based apps that are optimized for desktop and
mobile. It features a structure-rich template approach based upon a natural, easy-to-
write, and readable syntax.

Technically, these two frameworks have little or nothing in common: ASP.NET Core
is mostly focused on the server-side part of the web development stack, while
Angular is dedicated to covering all the client-side aspects of web applications, such
as the User Interface (UI) and User Experience (UX). However, both of them came
into being because of a common vision shared by their respective creators: the HTTP
protocol is not limited to serving web pages; it can also be used as a viable platform upon
which to build web-based APIs to effectively send and receive data. This is the notion that
slowly made its way through the first 20 years of the World Wide Web's life and is
now an undeniable, widely acknowledged statement and also a fundamental pillar of
almost every modern web development approach.

As for the reasons behind this perspective switch, there are plenty of good ones, the
most important of them being related to the intrinsic characteristics of the HTTP
protocol: it's rather simple to use, and flexible enough to match most of the
development needs of the ever-changing environment that the World Wide Web
happens to be in. This is not to mention how universal it has become nowadays:
almost any platform that we can think of has an HTTP library, so HTTP services can
reach a broad range of clients, including desktop and mobile browsers, IoT devices,
desktop applications, video games, and so on.

The main purpose of this book is to bring together the latest versions of ASP.NET
Core and Angular within a single development stack to demonstrate how they can be
used to create high-performance web applications and services that can be
used seamlessly by any clients.

Preface

[2]

Who this book is for
This book is for experienced ASP.NET developers who already know about ASP.NET
Core and Angular and are looking to learn more about them and understand how to
use them together to create a production-ready Single-Page Application (SPA) or
Progressive Web Application (PWA). However, the fully documented code samples
(also available on GitHub) and the step-by-step implementation tutorials make this
book easy to understand even for beginners and developers who are just getting
started.

What this book covers
Chapter 1, Getting Ready, introduces some of the basic concepts of the frameworks
that we are going to use throughout the book, as well as the various kinds of web
applications that can be created (SPAs, PWAs, native web apps, and more).

Chapter 2, Looking Around, is a detailed overview of the various back-end and front-
end elements provided by the .NET Core and Angular template shipped with Visual
Studio 2019, backed up with some high-level explanations about how they can work
together in a typical HTTP request-response cycle.

Chapter 3, Front-end and Back-end Interactions, provides a comprehensive tutorial for
building a sample ASP.NET Core and Angular app that provides diagnostic info to
the end user by querying health check middleware using a Bootstrap-based Angular
client.

Chapter 4, Data Model with Entity Framework Core, constitutes a journey through
Entity Framework Core and its capabilities as an Object-Relational Mapping (ORM)
framework, from SQL database deployment (cloud-based and/or local instance) to
data model design, including various techniques to read and write data from back-
end controllers.

Chapter 5, Fetching and Displaying Data, covers how to expose Entity Framework
Core data using the ASP.NET Core back-end web API, consume that data with
Angular, and then show it to end users using the front-end UI.

Chapter 6, Forms and Data Validation, details how to implement the HTTP PUT and
POST methods in back-end web APIs in order to perform insert and update
operations with Angular, along with server-side and client-side data validation.

Preface

[3]

Chapter 7, Code Tweaks and Data Services, explores some useful refactoring and
improvements to strengthen your app's source code and includes an in-depth
analysis of Angular's data services to understand why and how to use them.

Chapter 8, Back-end and Front-end Debugging looks at how to properly debug the
back-end and front-end stacks of a typical web application using the various
debugging tools provided by Visual Studio to their full extent.

Chapter 9, ASP.NET Core and Angular Unit Testing, comprises a detailed review of the
Test-Driven Development (TDD) and Behavior-Driven Development (BDD)
development practices and goes into how to define, implement, and perform back-
end and front-end unit tests using xUnit, Jasmine, and Karma.

Chapter 10, Authentication and Authorization, gives you a high-level introduction to
the concepts of authentication and authorization and presents a narrow lineup of
some of the various techniques, methodologies, and approaches to properly
implementing proprietary or third-party user identity systems. A practical example of
a working ASP.NET Core and Angular authentication mechanism based upon
ASP.NET Identity and IdentityServer4 is included.

Chapter 11, Progressive Web Apps, delves into how to convert an existing SPA into a
PWA using service workers, manifest files, and offline caching features.

Chapter 12, Windows and Linux Deployment, teaches you how to deploy the ASP.NET
and Angular apps created in the previous chapters and publish them in a cloud-based
environment using either a Windows Server 2019 or Linux CentOS virtual machine.

To get the most out of this book
These are the software packages (and relevant version numbers) used to write this
book and test the source code:

Visual Studio 2019 Community Edition 16.4.3
Microsoft .NET Core SDK 3.1.1
TypeScript 3.7.5
NuGet Package Manager 5.1.0
Node.js 13.7.0 (we strongly suggest installing it using the Node Version
Manager, also known as NVM)
Angular 9.0.0 final

Preface

[4]

For deployment on Windows:

ASP.NET Core 3.1 Runtime for Linux (YUM package manager)
.NET Core 3.1 CLR for Linux (YUM package manager)
Nginx HTTP Server (YUM package manager)

For deployment on Linux:

ASP.NET Core 3.1 Runtime for Linux (YUM package manager)
.NET Core 3.1 CLR for Linux (YUM package manager)
Nginx HTTP Server (YUM package manager)

If you're on Windows, I strongly suggest installing Node.js
using NVM for Windows-a neat Node.js version manager for the
Windows system. You can download it from the following URL:

https:/ ​/ ​github. ​com/ ​coreybutler/ ​nvm- ​windows/ ​releases.

We strongly suggest using the same version used within this book – or newer, but at
your own risk! Jokes aside, if you prefer to use a different version, that's perfectly
fine, as long as you are aware that, in that case, you may need to make some manual
changes and adjustments to the source code.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com

Preface

[5]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/​github. ​com/
PacktPublishing/ ​ASP. ​NET- ​Core- ​3- ​and-​Angular- ​9-​Third- ​Edition. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/ ​downloads/
9781789612165_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Navigate to the /ClientApp/src/app/cities folder."

A block of code is set as follows:

<mat-form-field [hidden]="!cities">
 <input matInput (keyup)="loadData($event.target.value)"
 placeholder="Filter by name (or part of it)...">
</mat-form-field>

https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789612165_ColorImages.pdf

Preface

[6]

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

import { FormGroup, FormControl } from '@angular/forms';

class ModelFormComponent implements OnInit {
 form: FormGroup;

 ngOnInit() {
 this.form = new FormGroup({
 title: new FormControl()
 });
 }
}

Any command-line input or output is written as follows:

> dotnet new angular -o HealthCheck

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "A simple Add a new City button will fix both these issues at once."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at
customercare@packtpub.com.

Preface

[7]

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Getting Ready

In this chapter, we'll build the basics of our ASP.NET and Angular journey by mixing
a theoretical coverage of their most relevant features and using a more practical
approach. More specifically, in the upcoming part of this chapter, we'll briefly review
the recent history of ASP.NET Core and Angular frameworks, while in the latter part,
we'll learn how to configure our local development environment so we can assemble,
build, and test a sample web application boilerplate.

By the end of this chapter, you'll have gained knowledge of the path taken by
ASP.NET Core and Angular to improve web development in the last few years, and
learned how to properly set up an ASP.NET and Angular web application.

Here are the main topics that we are going to cover:

The ASP.NET Core revolution: A brief history of ASP.NET Core and
Angular's most recent achievements.
A full-stack approach: The importance of being able to learn how to
design, assemble, and deliver a complete product.
Single-Page Applications (SPAs), Native Web Applications (NWAs), and
Progressive Web Applications (PWAs): Key features and the most
important differences between the various types of web applications, as
well as how well ASP.NET Core and Angular could relate to each one of
them.
A sample SPA project: What we're going to do throughout this book.
Preparing the workspace: How to set up our workstation to achieve our
first goal – implementing a simple Hello World boilerplate that will be
further extended within the following chapters.

Getting Ready Chapter 1

[9]

Technical requirements

These are the software packages (and relevant version numbers) used to write this
book and test the source code:

Visual Studio 2019 Community Edition 16.4.3
Microsoft .NET Core SDK 3.1.1
TypeScript 3.7.5
NuGet Package Manager 5.1.0
Node.js 13.7.0 (we strongly suggest installing it using the Node Version
Manager, also known as NVM)
Angular 9.0.0 final

If you're on Windows, I strongly suggest installing Node.js
using NVM for Windows-a neat Node.js version manager for the
Windows system. You can download it from the following URL:

https:/ ​/ ​github. ​com/ ​coreybutler/ ​nvm- ​windows/ ​releases.

We strongly suggest using the same version used within this book – or newer, but at
your own risk! Jokes aside, if you prefer to use a different version, that's perfectly
fine, as long as you are aware that, in that case, you may need to make some manual
changes and adjustments to the source code.

Two players, one goal
From the perspective of a fully functional web-based application, we can say that the
Web API interface provided with the ASP.NET Core framework is a programmatic
set of server-side handlers used by the server to expose a number of hooks and/or
endpoints to a defined request-response message system. This is typically expressed
in structured markup languages (XML), language-independent data formats (JSON),
or query languages for APIs (GraphQL). As we've already said, this is achieved by
exposing application programming interfaces (APIs) through HTTP and/or HTTPS
protocols via a publicly available web server such as IIS, Node.js, Apache, Nginx, and
so on.

https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases
https://github.com/coreybutler/nvm-windows/releases

Getting Ready Chapter 1

[10]

Similarly, Angular can be described as a modern, feature-rich, client-side
framework that pushes the HTML and ECMAScript's most advanced features, along
with the modern browser's capabilities, to their full extent by binding the input
and/or output parts of an HTML web page into a flexible, reusable and easily testable
model.

Can we combine the back-end strengths of ASP.NET Core and the front-end capabilities
of Angular in order to build a modern, feature-rich, and highly versatile web
application?

The answer, in short, is yes. In the following chapters, we'll see how we can do that
by analyzing all the fundamental aspects of a well-written, properly designed, web-
based product, and how the latest versions of ASP.NET Core and/or Angular can be
used to handle each one of them. However, before doing all that, it can be very useful
to backtrack a bit and spend some valuable time recollecting what's happened in the
last 3 years in the development history of the two frameworks we're going to use. It
will be very useful to understand the main reasons why we're still giving them full
credit, despite the valuable efforts of their ever-growing competitors.

The ASP.NET Core revolution
To summarize what happened in the ASP.NET world within the last 4 years is not an
easy task; in short, we can say that we've undoubtedly witnessed the most important
series of changes in .NET Framework since the year it came to life. This was a
revolution that changed the whole Microsoft approach to software development in
almost every way. To properly understand what happened through these years, it can
be useful to identify some distinctive key frames within a slow, yet constant, journey
that allowed a company known (and somewhat loathed) for its proprietary software,
licenses, and patents to become a driving force for open source development
worldwide.

The first relevant step, at least in my humble opinion, was taken on April 3, 2014 at
the annual Microsoft Build Conference, which took place at the Moscone Center
(West) in San Francisco. It was there, during a memorable keynote speech,
that Anders Hejlsberg – father of Delphi and lead architect of C# – publicly released
the first version of the .NET Compiler Platform, known as Roslyn, as an open source
project. It was also there that Scott Guthrie, executive vice president of the Microsoft
Cloud and AI group, announced the official launch of the .NET Foundation, a non-
profit organization aimed at improving open source software development and
collaborative work within the .NET ecosystem.

Getting Ready Chapter 1

[11]

From that pivotal day, the .NET development team published a constant flow of
Microsoft open source projects on the GitHub platform, including: Entity Framework
Core (May 2014), TypeScript (October 2014), .NET Core (October 2014), CoreFX
(November 2014), CoreCLR and RyuJIT (January 2015), MSBuild (March 2015), .NET
Core CLI (October 2015), Visual Studio Code (November 2015), .NET Standard
(September 2016), and so on.

ASP.NET Core 1.x
The most important achievement brought by these efforts towards open source
development was the public release of ASP.NET Core 1.0, which came out in Q3 2016.
It was a complete reimplementation of the ASP.NET Framework that we knew since
January 2002 and that had evolved, without significant changes in its core
architecture, up to version 4.6.2 (August 2016). The brand new framework united all
the previous web application technologies, such as MVC, Web API, and web pages,
into a single programming module, formerly known as MVC6. The new framework
introduced a fully featured, cross-platform Component, also known as .NET Core,
shipped with the whole set of open source tools mentioned previously, namely, a
compiler platform (Roslyn), a cross-platform runtime (CoreCLR), and an improved
x64 Just-In-Time compiler (RyuJIT).

Some of you may be wondering what happened to ASP.NET 5 and
Web API 2, as these used to be quite popular names until mid-2016.

ASP.NET 5 was no less than the original name of ASP.NET Core
before the developers chose to rename it to emphasize the fact that it
is a complete rewrite. The reasons for that, along with the Microsoft
vision about the new product, are further explained in the
following Scott Hanselman blog post that anticipated the changes on
Jan 16, 2016:
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNE
TCore10AndNETCore10.aspx.

For those who don't know, Scott Hanselman is the outreach and
community manager for .NET/ASP.NET/IIS/Azure and Visual
Studio since 2007. Additional information regarding the perspective
switch is also available in the following article by Jeffrey T. Fritz,
program manager for Microsoft and a NuGet team leader:
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-updat
e-on-asp-net-core-and-net-core/.

http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/

Getting Ready Chapter 1

[12]

As for Web API 2, it was a dedicated framework for building HTTP
services that returned pure JSON or XML data instead of web pages.
Initially born as an alternative to the MVC platform, it has been
merged with the latter into the new, general-purpose web
application framework known as MVC6, which is now shipped as a
separate module of ASP.NET Core.

The 1.0 final release was shortly followed by ASP.NET Core 1.1 (Q4 2016), which
brought some new features and performance enhancements, and also addressed
many bugs and compatibility issues affecting the earlier release. These new features
include the ability to configure middleware as filters (by adding them to the MVC
pipeline rather than the HTTP request pipeline), a built-in, host-independent URL
rewrite module, made available through the dedicated
Microsoft.AspNetCore.Rewrite NuGet package, View Components as tag
helpers, View compilation at runtime instead of on demand, .NET
native Compression and Caching middleware modules, and so on.

For a detailed list of all the new features, improvements, and bug
fixes of ASP.NET Core 1.1, check out the following links:

Release notes: https:/ ​/​github. ​com/​aspnet/ ​AspNetCore/ ​releases/
1.​1. ​0.

Commits list: https:/ ​/​github. ​com/​dotnet/ ​core/ ​blob/ ​master/
release- ​notes/ ​1. ​1/ ​1. ​1-​commits. ​md.

ASP.NET Core 2.x
Another major step was taken with ASP.NET Core 2.0, which came out in Q2 2017 as
a preview and then in Q3 2017 for the final release. The new version featured a wide
number of significant interface improvements, mostly aimed at standardizing the
shared APIs among .NET Framework, .NET Core, and .NET Standard to make them
backward-compatible with .NET Framework. Thanks to these efforts, moving existing
.NET Framework projects to .NET Core and/or .NET Standard became a lot easier
than before, giving many traditional developers the chance to try and adapt to the
new paradigm without losing their existing know-how.

https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/aspnet/AspNetCore/releases/1.1.0

Getting Ready Chapter 1

[13]

Again, the major version was shortly followed by an improved and refined one:
ASP.NET Core 2.1. This was officially released on May 30, 2018 and introduced a
series of additional security and performance improvements, as well as a bunch of
new features, including SignalR, an open source library that simplifies adding real-
time web functionality to .NET Core apps; Razor class libraries; a significant
improvement in Razor SDK that allows developers to build views and pages into
reusable class libraries, and/or library projects that could be shipped as NuGet
packages; Identity UI library and scaffolding, to add identity to any app and
customize it to meet your needs, HTTPS support enabled by default; built-in General
Data Protection Regulation (GDPR) support using privacy-oriented APIs and
templates that give users control over their personal data and cookie
consent; updated SPA templates for Angular and ReactJS client-side frameworks; and
much more.

For a detailed list of all the new features, improvements, and bug
fixes of ASP.NET Core 2.1, check out the following links:

Release notes: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​US/​aspnet/ ​core/
release- ​notes/ ​aspnetcore- ​2. ​1.​

Commits list: https:/ ​/​github. ​com/​dotnet/ ​core/ ​blob/ ​master/
release- ​notes/ ​2. ​1/ ​2. ​1.​0-​commit. ​md.

 Wait a minute: did we just say Angular? Yeah, that's right. As a matter of fact, since
its initial release, ASP.NET Core has been specifically designed to
seamlessly integrate with popular client-side frameworks such as ReactJS and
Angular. It is precisely for this reason that books such as this do actually exist. The
major difference introduced in ASP.NET Core 2.1 is that the default Angular and
ReactJS templates have been updated to use the standard project structures and build
systems for each framework (Angular CLI and NPX's create-react-app command)
instead of relying on task runners such as Grunt or Gulp, module builders such
as webpack, or toolchains such as Babel, which were widely used in the past although
were quite difficult to install and configure.

https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md

Getting Ready Chapter 1

[14]

Being able to eliminate the need for these tools was a major
achievement, which played a decisive role in revamping the .NET
Core usage and growth rate among the developer communities
since 2017. If you take a look at the two previous installments of this
book – ASP.NET Core and Angular 2, published in mid-2016, and
ASP.NET Core 2 and Angular 5, out in late 2017 – and compare their
first chapter with this one, you will see the huge difference between
having to manually use Gulp, Grunt, or webpack and relying on the
integrated framework-native tools. This is a substantial reduction in
complexity that would greatly benefit any developer, especially
those less accustomed to working with those tools.

After 6 months from the release of the 2.1 version, the .NET Foundation came out
with a further improvement: ASP.NET Core 2.2 was released on December 4, 2018
with several fixes and new features, such as an improved endpoint routing system for
better dispatching of requests, updated templates featuring Bootstrap 4 and Angular
6 support, a new health checks service to monitor the status of deployment
environments and their underlying infrastructures, including container orchestration
systems such as Kubernetes, built-in HTTP/2 support in Kestrel, a new SignalR Java
client to ease the usage of SignalR within Android apps, and so on.

For a detailed list of all the new features, improvements, and bug
fixes of ASP.NET Core 2.2, check out the following links:

Release notes: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​US/​aspnet/ ​core/
release- ​notes/ ​aspnetcore- ​2. ​2.​

Commits list: https:/ ​/​github. ​com/​dotnet/ ​core/ ​blob/ ​master/
release- ​notes/ ​2. ​2/ ​2. ​2.​0/​2.​2. ​0-​commits. ​md.​

https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md

Getting Ready Chapter 1

[15]

ASP.NET Core 3.x
ASP.NET Core 3 was released in September 2019 and came with another bunch of
performance and security improvements and new features, such as Windows desktop
applications support (Windows only) with advanced importing capabilities for
Windows Forms and Windows Presentation Foundation (WPF) applications, C# 8
support, .NET Platform-Dependent Intrinsic access through a new set of built-in
APIs that could bring significant performance improvements in certain
scenarios, single-file executables support via the dotnet publish command using
the <PublishSingleFile> XML element in project configuration or through the
/p:PublishSingleFile command-line parameter, a new built-in JSON support
featuring high performance and low allocation that's arguably 2x-3x faster than the
JSON.NET third-party library (which became a de facto standard in most ASP.NET
web projects), TLS 1.3 and OpenSSL 1.1.1 support in Linux, some important security
improvements in the System.Security.Cryptography namespace, including AES-
GCM and AES-CCM ciphers support, and so on.

A lot of work has also been done to improve the performance and reliability of the
framework when used in a containerized environment. The ASP.NET Core
development team put a lot of effort into improving the .NET Core Docker experience
on .NET Core 3.0. More specifically, this is the first release featuring substantive
runtime changes to make CoreCLR more efficient, honor Docker resource limits
better (such as memory and CPU) by default, and offer more configuration tweaks.
Among the various improvements, we could mention improved memory and GC
heap usage by default, and PowerShell Core, a cross-platform version of the famous
automation and configuration tool, which is now shipped with the .NET Core SDK
Docker container images.

.NET Core Framework 3 also introduced Blazor, a free and open source web
framework that enables developers to create web apps using C# and HTML.

Last but not least, it's worth noting that the new .NET Core SDK is much smaller than
the previous installments, mostly thanks to the fact that the development team
removed a huge set of unnecessary artifacts included in the various NuGet packages
that were used to assemble the previous SDKs (including ASP.NET Core 2.2) from the
final build, thus wasting a lot of space. The size improvements are huge for Linux and
macOS versions, while less noticeable on Windows because that SDK also contains
the new WPF and Windows Forms set of platform-specific libraries.

Getting Ready Chapter 1

[16]

For a detailed list of all the new features, improvements, and bug
fixes of ASP.NET Core 3.0, check out the following links:

Release notes: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/ ​core/
whats- ​new/ ​dotnet- ​core- ​3-​0.

ASP.NET Core 3.0 releases page: https:/ ​/​github. ​com/ ​dotnet/
core/ ​tree/ ​master/ ​release- ​notes/ ​3. ​0.

ASP.NET Core 3.1, which is the most recent stable version at the time of writing, was
released on December 3, 2019. The changes in the latest version are mostly focused on
Windows desktop development, with the definitive removal of a number of legacy
Windows Forms controls (DataGrid, ToolBar, ContextMenu, Menu, MainMenu, and
MenuItem) and added support for creating C++/CLI Components (on Windows only).

Most of the ASP.NET Core updates were fixes related to Blazor, such as preventing
default actions for events and stopping event propagation in Blazor apps, partial class
support for Razor Components, additional Tag Helper Component features, and so on;
however, much like the other .1 releases, the primary goal of .NET Core 3.1 was to
refine and improve the features already delivered in the previous version, with more
than 150 performance and stability issues fixed.

A detailed list of the new features, improvements, and bug fixes
introduced with ASP.NET Core 3.1 is available at the following
URL:

Release notes: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/ ​core/
whats- ​new/ ​dotnet- ​core- ​3-​1.​

This concludes our journey through the recent history of ASP.NET Core. In the next
section, we'll move our focus to the Angular ecosystem, which experienced a rather
similar turn of events.

https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1

Getting Ready Chapter 1

[17]

What's new in Angular?
If following in the footsteps of Microsoft and the .NET Foundation in recent years has
not been an easy task, things were not going to get any better when we turned our
eyes to the client-side web framework known as Angular. In order to understand
what happened there, we have to go back 10 years when JavaScript libraries such
as jQuery and MooTools were dominating the client-side scenes, the first client-side
frameworks such as Dojo, Backbone.js, and Knockout.js were struggling to gain
popularity and reach wide adoption, and stuff such as React and Vue.js didn't even
exist.

Truth be told, jQuery is still dominating the scene to a huge extent,
at least according to Libscore (http:/ ​/ ​libscore. ​com/ ​#libs) and
w3Techs (https:/ ​/​w3techs. ​com/ ​technologies/ ​overview/
javascript_ ​library/ ​all). However, despite being used by 74.1% of
all websites, it's definitely a less chosen option for web developers
than it was 10 years ago.

GetAngular
The story of AngularJS started in 2009 when Miško Hevery (now senior computer
scientist and Agile coach at Google) and Adam Abrons (now director of engineering
at Grand Rounds) were working on their side project, an end-to-end (E2E) web
development tool that would have offered an online JSON storage service and also a
client-side library to build web applications depending on it. To publish their project,
they took the GetAngular.com hostname.

During that time, Hevery, who was already working at Google, was assigned to the
Google Feedback project with two other developers. Together, they wrote more than
17,000 lines of code in 6 months, slowly sinking into a frustrating scenario of code
bloat and testing issues. Given the situation, Hevery asked his manager to rewrite the
application using GetAngular (the side project mentioned previously), betting that he
could do that alone within 2 weeks. His manager accepted and Hevery lost the bet
shortly thereafter, as the whole thing took him 3 weeks instead of two; however, the
new application had only 1,500 lines of code instead of 17,000. This was more than
enough to get Google's interest for the new framework, which was given the name
of AngularJS shortly thereafter.

http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all

Getting Ready Chapter 1

[18]

To listen to the full story, take a look at the following Miško Hevery
keynote speech at ng-conf 2014:

https:/ ​/ ​www. ​youtube. ​com/​watch? ​v= ​r1A1VR0ibIQ.

AngularJS
The first stable release of AngularJS (version 0.9.0, also known as dragon-breath) was
released on GitHub in October 2010 under an MIT license; when AngularJS 1.0.0 (also
known as temporal domination) came out on June 2012, the framework had already
achieved huge popularity within the web development communities worldwide.

The reasons for such extraordinary success can hardly be summarized in a few
words, but I'll try to do that nonetheless by emphasizing some fundamental key
selling points:

Dependency injection: AngularJS was the first client-side framework to
implement it. This was undeniably a huge advantage over the competitors,
including DOM-manipulating libraries such as jQuery. With AngularJS,
developers could write loosely coupled and easily testable Components,
leaving the framework with the task of creating them, resolving their
dependencies, and passing them to other Components when requested.
Directives: These can be described as markers on specific DOM items such
as elements, attributes, styles, and so on: a powerful feature that could be
used to specify custom and reusable HTML-like elements and attributes
that define data bindings and/or other specific behaviors of presentation
Components.
Two-way data binding: The automatic synchronization of data between
model and view Components. When data in a model changes, the view
reflects the change; when data in the view changes, the model is updated as
well. This happens immediately and automatically, which makes sure that
the model and the view are updated at all times.
Single-page approach: AngularJS was the first framework to completely
remove the need for page reloads. This provided great benefits at
both server-side (fewer and smaller network requests) and client-side level
(smoother transitions, more responsive experience), and paved the way for
the Single-Page Application pattern that would be also adopted by React,
Vue.js, and the other runner-up frameworks later on.

https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ

Getting Ready Chapter 1

[19]

Cache-friendly: All the AngularJS magic was meant to happen on the
client-side, without any server-side effort to generate the UI/UX parts. For
this very reason, all AngularJS websites could be cached anywhere and/or
made available through a CDN.

For a detailed list of AngularJS features, improvements, and bug
fixes from 0.9.0 through 1.7.8, check out the following link:

Angularjs 1.x Changelog: https:/ ​/​github. ​com/ ​angular/ ​angular.
js/ ​blob/ ​master/ ​CHANGELOG. ​md.

Angular 2
The new release of AngularJS, released on September 14, 2016 and known as Angular
2, was a complete rewrite of the previous one, entirely based upon the new
ECMAScript version 6 (officially ECMAScript 2015) specifications. Just like the
ASP.NET Core rewrite, the revolution brought such a number of breaking changes at
architectural level, HTTP pipeline handling, app life cycle, and state management
that porting the old code to the new one was nearly impossible. Despite keeping its
former name, the new Angular version was a brand new framework with little or
nothing in common with the previous one.

The choice of not making Angular 2 backward-compatible with AngularJS clearly
demonstrated the intention of the author's team to adopt a completely new approach:
not only in the code syntax, but also in their way of thinking and designing the client
app. The new Angular was highly modular, Component-based, came with a new and
improved dependency injection model, and a whole lot of programming patterns its
older cousin had never heard of.

https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md

Getting Ready Chapter 1

[20]

Here's a brief list of the most important improvements introduced with Angular 2:

Semantic versioning: Angular 2 is the first release to use semantic
versioning, also known as SemVer: a universal way of versioning the
various software releases to help developers track down what's going on
without having to dig into the changelog details. SemVer is based on three
numbers – X.Y.Z – where X stands for a major version, Y stands for a minor
version, and Z stands for a patch release. More specifically, the X number,
representing the major version, gets incremented when incompatible API
changes are made to stable APIs, the Y number, representing the minor
version, gets incremented when backward-compatible functionality is
added, and the Z number, representing a patch release, gets incremented
when a backward-compatible bug is fixed. Such improvements can be
easily underestimated, yet it's a must-have for most modern software
development scenarios where Continuous Delivery (CDE) is paramount
and new versions are released with great frequency.
TypeScript: If you're a seasoned web developer, you probably already
know what TypeScript is. In case you don't, no worries, you'll get way
more on that later on since we're going to use it a lot during the Angular-
related chapters of this book. For now, let's just say that TypeScript is a
Microsoft-made superset of JavaScript that allows the use of all ES2015
features (such as Default-Rest-Spread Parameters, Template
Literals, Arrow Functions, Promises, and more) and adds powerful type-
checking and object-oriented features during development (such as class
and type declarations). The TypeScript source code can be transpiled into
standard JavaScript code that all browsers can understand.
Server-side rendering (SSR): Angular 2 comes with Angular Universal, an
open source technology that allows a back-end server to run Angular
applications and serve only the resulting static HTML files to the client. In
a nutshell, the server will render a first pass of the page for faster delivery
to the client, then immediately refresh it with client code. SSR has its
caveats, such as requiring Node.js to be installed on the host machine to
execute the necessary pre-rendering steps, as well as having the whole
node_modules folder there, but can greatly increase the app's response
time for a typical internet browser, thus mitigating a known AngularJS
performance issue.
Angular Mobile Toolkit (AMT): A set of tools specifically designed for
building high-performance mobile apps.
Command-line interface (CLI): The new CLI introduced with Angular 2
could be used by developers to generate Components, routes, services, and
pipes via console/Terminal commands, together with simple test shells.

Getting Ready Chapter 1

[21]

Components. These are the main building blocks of Angular 2, entirely
replacing the Controllers and scopes of AngularJS, and also lifting most of
the tasks previously covered by the former directives. Application data,
business logic, templating, and the styling of an Angular 2 app can all be
made using Components.

I did my best to explore most of these features in my first book,
ASP.NET Core and Angular 2, which was published in October 2016,
right after the final release of the two frameworks:

https:/ ​/ ​www. ​packtpub. ​com/​application- ​development/ ​aspnet-
core- ​and- ​angular- ​2.

Angular 4
On March 23, 2017, Google released Angular 4: the number 3 version was skipped
entirely in order to unify all the major versions of the many Angular
Components that had been developed separately until that date, such as Angular
Router, which already was at version 3.x at the time. Starting with Angular 4,
the entire Angular framework was then unified into the same
MAJOR.MINOR.PATCH SemVer pattern.

The new major version brought a limited number of breaking changes, such as a new
and improved routing system, TypeScript 2.1+ support (and requirement), and some
deprecated interfaces and tags. There was also a good amount of improvements,
including:

Ahead-of-time (AOT) compilation: Angular 4 compiles the templates
during the build phase and generates JavaScript code accordingly. That's a
huge architectural improvement over the JIT mode used by AngularJS and
Angular 2 where the app was compiled at runtime. For example, when the
application starts, not only is the app faster since the client doesn't have to
compile anything, but it throws/breaks at build time instead of during
runtime for most Component errors, thus leading to more secure and stable
deployments.
Animations npm package: All the existing UI animations and effects – as
well as new ones – have been moved to the @angular/animations
dedicated package instead of being part of @angular/core. This was a
smart move to give non-animated apps the chance to drop that part of
code, thus being much smaller and arguably faster.

https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2

Getting Ready Chapter 1

[22]

Other notable improvements included: a new form validator to check for valid email
addresses, a new paramMap interface for URL parameters in the HTTP routing
module, better internalization support, and so on.

Angular 5
Released on November 1, 2017, Angular 5 featured TypeScript 2.3 support, another
small set of breaking changes, many performance and stability improvements, and a
couple of new features, such as the following:

New HTTP Client API: Starting from Angular 4.3, the @angular/http
module was put aside in favor of a new @angular/common/http package
with better JSON support, interceptors and immutable request/response
objects, and other stuff. The switch was completed in Angular 5 with the
previous module being deprecated and the new one recommended for use
in all apps.
State Transfer API: A new feature that gives the developer the ability to
transfer the state of the application between the server and the client.
A new set of router events for more granular control over the HTTP life
cycle: ActivationStart, ActivationEnd, ChildActivationStart,
ChildActivationEnd, GuardsCheckStart, GuardsCheckEnd,
ResolveStart and ResolveEnd.

November 2017 was also the release month of my ASP.NET Core 2
and Angular 5 book, which covers most of the aforementioned
improvements:

https:/ ​/ ​www. ​packtpub. ​com/​application- ​development/ ​aspnet-
core- ​2-​and- ​angular- ​5. ​

In June 2018, that book was made available as a video course:

https:/ ​/ ​www. ​packtpub. ​com/​web- ​development/ ​asp- ​net- ​core- ​2-
and- ​angular- ​5- ​video.

https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video

Getting Ready Chapter 1

[23]

Angular 6
Released on April 2018, Angular 6 was mostly a maintenance release, more focused
on improving the overall consistency of the framework and its toolchain than adding
new features. Therefore, there were no major breaking changes. RxJS 6 supports a
new way to register providers, the new providedIn injectable decorator,
improved Angular Material support (a Component specifically made to implement
material design in the Angular client-side UI), more CLI commands/updates, and so
on.

Another improvement worth mentioning was the new CLI ng add command, which
uses the package manager to download new dependencies and invoke an installation
script to update our project with configuration changes, add additional dependencies,
and/or scaffold package-specific initialization code.

Last, but not least, the Angular team introduced Ivy, a next-generation Angular
rendering engine that aims to increase the speed and decrease the size of the
application.

Angular 7
Angular 7 came out in October 2018 and it definitely was a major update, as we can
easily guess by reading the words written by Stephen Fluin, developer relations lead
at Google and prominent Angular spokesman, on the official Angular development
blog upon the official release:

"This is a major release spanning the entire platform, including the core framework,
Angular Material, and the CLI with synchronized major versions. This release
contains new features for our toolchain, and has enabled several major partner
launches."

Here's a list of the new features:

Easy upgrade: Thanks to the groundwork made with version 6, the
Angular team was able to reduce the steps that need to be done to upgrade
an existing Angular app from an older version to the most recent one. The
detailed procedure can be viewed by visiting https:/ ​/​update. ​angular. ​io,
an incredibly useful Angular upgrade interactive guide that can be used to
quickly recover the required steps, such as CLI commands, package
updates, and so on. This needs to be done to upgrade an existing Angular
app from an older version of Angular to a most recent one.

https://update.angular.io/
https://update.angular.io/
https://update.angular.io/
https://update.angular.io/
https://update.angular.io/
https://update.angular.io/
https://update.angular.io/
https://update.angular.io/
https://update.angular.io/

Getting Ready Chapter 1

[24]

CLI update: A new command that attempts to automatically upgrade the
Angular application and its dependencies by following the procedure
mentioned previously.
CLI prompts: The Angular command-line interface has been modified to
prompt users when running common commands such as ng new or ng
add @angular/material to help developers discover built-in features
such as routing, SCSS support, and so on.
Angular Material and CDK: Additional UI elements such as virtual
scrolling, a Component that loads and unloads elements from the DOM
based on the visible parts of a list, making it possible to build very fast
experiences for users with very large scrollable lists, CDK-native drag-and-
drop support, improved drop-down list elements, and more.
Partner launches: Improved compatibility with a number of third-party
community projects such as: Angular Console; a downloadable console for
starting and running Angular projects on your local
machine, AngularFire, the official Angular package for Firebase
integration, Angular for NativeScript; an integration between Angular and
NativeScript – a framework for building native iOS and Android apps
using JavaScript and/or JS-based client frameworks, some interesting new
Angular-specific features for StackBlitz; an online IDE that can be used to
create Angular and React projects, such as a tabbed editor and an
integration with the Angular Language Service, and so on.
Updated dependencies: Added support for TypeScript 3.1, RxJS 6.3,
and Node 10, although the previous versions can still be used for backward
compatibility.

The Angular Language Service is a way to get completions, errors,
hints, and navigation inside Angular templates: think about it as a
virtuous mix between a syntax highlighter, IntelliSense, and a real-
time syntax error checker. Before Angular 7, which added the
support for StackBlitz, such a feature was only available for Visual
Studio Code and WebStorm.

For additional information about the Angular Language Service,
take a look at the following URL:

https:/ ​/ ​angular. ​io/ ​guide/ ​language- ​service

https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service

Getting Ready Chapter 1

[25]

Angular 8
Angular 7 was quickly followed by Angular 8, which was released on May 29, 2018.
The new release is mostly about Ivy, the long-awaited new compiler/runtime of
Angular: although being an ongoing project since Angular 5, version 8 was the first
one to officially offer a runtime switch to actually opt-in to using Ivy, which would
become the default runtime starting from Angular 9.

In order to enable Ivy on Angular 8, the developers had to add an
"enableIvy": true property to the angularCompilerOptions
section within the app's tsconfig.json file.

Those who want to know more about Ivy are encouraged to give an
extensive look at the following post by Cédric Exbrayat, co-founder
and trainer at the Ninja-Squad website and now part of the Angular
developer team:

https:/ ​/ ​blog. ​ninja- ​squad. ​com/ ​2019/ ​05/ ​07/​what- ​is- ​angular-
ivy/ ​.

Other notable improvements and new features include:

Bazel support: Angular 8 was the first version to support Bazel, a free
software tool developed and used by Google for the automation of building
and testing software. It can be very useful for developers aiming to
automate their delivery pipeline as it allows incremental build and tests,
and even the possibility to configure remote builds (and cache) on a build
farm.
Routing: A new syntax was introduced to declare the lazy-loading routes
using the import() syntax from TypeScript 2.4+ instead of relying on a
string literal. The old syntax has been kept for backward compatibility, but
will be arguably dropped soon.
Service workers: A new registration strategy has been introduced to allow
developers to choose when to register their workers instead of doing it
automatically at the end of the app's startup life cycle. It's also possible to
bypass a service worker for a specific HTTP request using the new ngsw-
bypass header.
Workspace API: A new and more convenient way to read and modify the
Angular workspace configuration instead of manually modifying the
angular.json file.

https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/
https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/

Getting Ready Chapter 1

[26]

In client-side development, a service worker is a script that the
browser runs in the background to do any kind of stuff that doesn't
require either a user interface or any user interaction.

The new version also introduced some notable breaking changes – mostly due to Ivy
– and removed some long-time deprecated packages such as @angular/http, which
was replaced by @angular/common/http in Angular 4.3 and then officially
deprecated in 5.0.

A comprehensive list of all the deprecated APIs can be found in the
official Angular deprecations guide at the following URL:

https:/ ​/ ​angular. ​io/ ​guide/ ​deprecations.

Angular 9
Last, but not least, we come to Angular 9, which was released in February 2020 after a
long streak of release candidates through 2019 Q4 and is currently the most recent
version.

The new release brings the following new features:

JavaScript bundles and performance: An attempt to fix the very large
bundle files, one of the most cumbersome issues of the previous versions of
Angular, has drastically increased the download time and brought down
the overall performances.
Ivy compiler: The new Angular build and render pipeline, shipped with
Angular 8 as an opt-in preview, is now the default rendering engine.
Selector-less bindings: A useful feature that was available to the previous
rendering engine, but missing from the Angular 8 Ivy preview, is now
available to Ivy as well.
Internationalization: Another Ivy enhancement that makes use of the
Angular CLI to generate most of the standard code necessary to create files
for translators and to publish an Angular app in multiple languages, thanks
to the new i18n attribute.

https://angular.io/guide/deprecations
https://angular.io/guide/deprecations
https://angular.io/guide/deprecations
https://angular.io/guide/deprecations
https://angular.io/guide/deprecations
https://angular.io/guide/deprecations
https://angular.io/guide/deprecations
https://angular.io/guide/deprecations
https://angular.io/guide/deprecations
https://angular.io/guide/deprecations
https://angular.io/guide/deprecations

Getting Ready Chapter 1

[27]

The new i18n attribute is a numeronym, which is often used as an
alias of internationalization. The number 18 stands for the number
of letters between the first i and the last n in the word
internationalization. The term seems to have been coined by
the Digital Equipment Corporation (DEC) around the 1970s or
1980s, together with l10n for localization, due to the excessive
length of the two words.

The long-awaited Ivy compiler deserves a couple more words, being a very
important feature for the future of Angular.

As you most likely already know, the rendering engine plays a major role in the
overall performance of any front-end framework since it's the tool that translates the
actions and intents performed by the presentation logic (in Angular, Components,
and templates) into the instructions that will update the DOM. If the renderer is more
efficient, it will arguably require less instructions, thus increasing the overall
performance while decreasing the amount of required JavaScript code at the same
time. Since the JavaScript bundles produced by Ivy are much smaller than the
previous rendering engine, Angular 9's overall improvement is relevant in terms of
both performance and size.

This concludes our brief review of the recent history of the ASP.NET Core and
Angular ecosystems. In the next sections, we'll summarize the most important
reasons that led us to actually choosing them in 2020.

Reasons for choosing .NET Core and Angular
As we have seen, both frameworks have gone through three intense years of changes.
This led to a whole refoundation of their core and, right after that, a constant strain to
get back on top – or at least not lose ground against most modern frameworks that
came out after their now departed golden age. They are eager to dominate the
development scene: Python, Go, and Rust for the server-side part and React, Vue.js,
and Ember.js for the client-side part, not to mention the Node.js
and Express ecosystem, and most of the old competitors from the 1990s and 2000s,
such as Java, Ruby, and PHP, which are still alive and kicking.

Getting Ready Chapter 1

[28]

That said, here's a list of good reasons for picking ASP.NET Core in 2019:

Performance: The new .NET Core web stack is considerably fast, especially
since version 3.x.
Integration: It supports most, if not all, modern client-side frameworks,
including Angular, React, and Vue.js.
Cross-platform approach: .NET Core web applications can run on
Windows, macOS, and Linux in an almost seamless way.
Hosting: .NET Core web applications can be hosted almost anywhere: from
a Windows machine with IIS to a Linux appliance with Apache or Nginx,
from Docker containers to edge-case, self-hosting scenarios using the
Kestrel and WebListener HTTP servers.
Dependency injection: The framework supports a built-in dependency
injection design pattern that provides a huge number of advantages during
development, such as reduced dependencies, code reusability, readability,
and testing.
Modular HTTP pipeline: ASP.NET Core middleware grants developers
granular control over the HTTP pipeline, which can be reduced to its core
(for ultra-lightweight tasks) or enriched with powerful, highly configurable
features such as internationalization, third-party
authentication/authorization, caching, routing, and so on.
Open source: The whole .NET Core stack has been released as open source
and is entirely focused on strong community support, thus being reviewed
and improved by thousands of developers every day.
Side-by-side execution: It supports the simultaneous running of multiple
versions of an application or Component on the same machine. This
basically means that it's possible to have multiple versions of the common
language runtime, and multiple versions of applications and Components
that use a version of the runtime, on the same computer at the same time.
This is great for most real-life development scenarios as it gives the
development team more control over which versions of a Component an
application binds to, and more control over which version of the runtime
an application uses.

Getting Ready Chapter 1

[29]

As for the Angular framework, the most important reason we're picking it over other
excellent JS libraries such as React, Vue.js, and Ember.js is the fact that it already
comes with a huge pack of features out of the box, making it the most suitable choice,
although maybe not as simple to use as other framework/libraries. If we combine that
with the consistency benefits brought by the TypeScript language, we can say that
Angular, from its 2016 rebirth up to the present day, embraced the framework
approach more convincingly than the others. This has been consistently confirmed
over the course of the past 3 years where the project underwent six major versions
and gained a lot in terms of stability, performance, and features, without losing much
in terms of backward compatibility, best practices, and overall approach. All these
reasons are solid enough to invest in it, hoping it will continue to keep up with these
compelling premises.

Now that we have acknowledged the reasons to use these frameworks, let's ask
ourselves the best way to find out more about them: the next sections should give us
the answers we need.

A full-stack approach
Learning to use ASP.NET Core and Angular together would mean being able to work
with both the front-end (client side) and back-end (server side) of a web application; to
put it in other words, it means being able to design, assemble, and deliver a complete
product.

Eventually, in order to do that, we'll need to dig through the following:

Back-end programming
Front-end programming
UI styling and UX design
Database design, modeling, configuration, and administration
Web server configuration and administration
Web application deployment

At first glance, it can seem that this kind of approach goes against common sense; a
single developer should not be allowed to do everything by himself. Every developer
knows that the back-end and the front-end require entirely different skills and
experiences, so why in the world should we do that?

Getting Ready Chapter 1

[30]

Before answering this question, we should understand what we really mean when we
say being able to. We don't have to become experts on every single layer of the stack;
no one expects us to. When we choose to embrace the full-stack approach, what we
really need to do is raise our awareness level throughout the whole stack we're
working on; this means that we need to know how the back-end works, and how it can
and will be connected to the front-end. We need to know how the data will be stored,
retrieved, and then served through the client. We need to acknowledge the
interactions we will need to layer out between the various Components that our web
application is made of, and we need to be aware of security concerns, authentication
mechanisms, optimization strategies, load balancing techniques, and so on.

This doesn't necessarily mean that we have to have strong skills in all these areas; as a
matter of fact, we hardly ever will. Nonetheless, if we want to pursue a full-stack
approach, we need to understand the meaning, role, and scope of all of them.
Furthermore, we should be able to work our way through any of these fields
whenever we need to.

SPAs, NWAs, and PWAs
In order to demonstrate how ASP.NET Core and Angular can work together to their
full extent, we couldn't think of anything better than building some small SPA
projects with most, if not all, Native Web Application features. The reason for such a
choice is quite obvious: there is no better approach to show some of the best features
they have to offer nowadays. We'll have the chance to work with modern interfaces
and patterns such as HTML5 pushState API, webhooks, data transport-based
requests, dynamic web Components, UI data bindings, and a stateless, AJAX-driven
architecture capable of flawlessly encompassing all of these. We'll also make good use
of some distinctive NWA features such as service workers, web manifest files, and so
on.

If you don't know the meaning of these definitions and acronyms, don't worry, we are
going to explore these concepts in the next couple of sections, which are dedicated to
enumerating the most relevant features of the following types of web applications:
SPAs, NWAs, and PWAs. While we're there, we'll also try to figure out the most
common product owner's expectations for a typical web-based project.

Getting Ready Chapter 1

[31]

Single-page application
To put it briefly, an SPA is a web-based application that struggles to provide the same
user experience as a desktop application. If we consider the fact that all SPAs are still
served through a web server and thus accessed by web browsers just like any other
standard website, we can easily understand how that desired outcome can only be
achieved by changing some of the default patterns commonly used in web
development, such as resource loading, DOM management, and UI navigation. In a
good SPA, both contents and resources – HTML, JavaScript, CSS, and so on – are
either retrieved within a single page load or are dynamically fetched when needed.
This also means that the page doesn't reload or refresh, it just changes and adapts in
response to user actions, performing the required server-side calls behind the scenes.

These are some of the key features provided by a competitive SPA nowadays:

No server-side round trips: A competitive SPA can redraw any part of the
client UI without requiring a full server-side round trip to retrieve a full
HTML page. This is mostly achieved by implementing a separation of
concerns (SOC) design principle, which means that the data source, the
business logic, and the presentation layer will be separated.
Efficient routing: A competitive SPA is able to keep track of the user's
current state and location during its whole navigation experience using
organized, JavaScript-based routers. We'll talk more about that in the
upcoming chapters when we introduce the concepts of server-side and
client-side routing.
Performance and flexibility: A competitive SPA usually transfers all of its
UI to the client, thanks to its JavaScript SDK of choice (Angular, JQuery,
Bootstrap, and so on). This is often good for network performance as
increasing client-side rendering and offline processing reduces the UI
impact over the network. However, the real deal brought by this approach
is the flexibility granted to the UI as the developer will be able to
completely rewrite the application front-end with little or no impact on the
server, aside from a few of the static resource files.

This list can easily grow, as these are only some of the major advantages of a properly
designed, competitive SPA. These aspects play a major role nowadays, as many
business websites and services are switching from their traditional Multi-Page
Application (MPA) mindset to fully-committed or hybrid SPA-based approaches.

Getting Ready Chapter 1

[32]

Native web application
Multi-page applications, which have been increasingly popular since 2015, are
commonly called NWAs because they tend to implement a number of small-scale,
single-page modules bound together upon a multipage skeleton rather than building
a single, monolithic SPA.

A – not to mention the fact that there are also a lot of enterprise-level SPAs and
NWAs flawlessly serving thousands of users every day. Want to name a few?
WhatsApp Web and Teleport Web, Flickr, plus a wide range of Google web services,
including Gmail, Contacts, Spreadsheet, Maps, and more. These services, along with
their huge user base, are the ultimate proof that we're not talking about a silly trend
that will fade away with time; conversely, we're witnessing the completion of a
consolidated pattern that's definitely meant to stay.

Progressive web application
During 2015, another web development pattern pushed its way into light when
Frances Berriman (a British freelance designer) and Alex Russel (a Google Chrome
engineer) used the term PWAs for the first time to refer to those web applications that
could take advantage of a couple of new important features supported by modern
browsers: service workers and web manifest files. These two important
improvements could be successfully used to deliver some functionalities usually only
available on mobile apps – push notifications, offline mode, permission-based
hardware access, and so on – using standard web-based development tools such as
HTML, CSS, and JavaScript.

The rise of Progressive Web Apps began in March 19, 2018, when Apple
implemented support for service workers in Safari 11.1. Starting from that date,
PWAs have been widely adopted throughout the industry thanks to their undeniable
advantages over MPAs, SPAs, and NWAs: faster load times, smaller application sizes,
higher audience engagement, and so on.

Getting Ready Chapter 1

[33]

Here are the main technical features of a Progressive Web App (according to Google):

Progressive: Works for every user, regardless of browser choice, using
progressive enhancement principles
Responsive: Fits any form factor: desktop, mobile, tablet, or forms yet to
emerge.
Connectivity independent: Service workers allow offline uses, or on low-
quality networks.
App-like: Feels like an app to the user with app-style interactions and
navigation.
Fresh: Always up to date due to the service worker update process
Safe: Served via HTTPS to prevent snooping and ensure content hasn't
been tampered with
Discoverable: Identifiable as an application by a web manifest
(manifest.json) file, and a registered service worker, and discoverable
by search engines
Re-engageable: Ability to use push notifications to maintain engagement
with the user
Installable: Provides home screen icons without the use of an App Store
Linkable: Can easily be shared via a URL and does not require complex
installation

However, their technical baseline criteria can be restricted to the following subset:

HTTPS: They must be served from a secure origin, which means over TLS
with green padlock displays (no active mixed content).
Minimal offline mode: They must be able to start, even if the device is not
connected to the web, with limited functions or at least displaying a custom
offline page.
Service workers: They have to register a service worker with a fetch event
handler (which is required for minimal offline support, as explained
previously).
Web manifest file: They need to reference a valid manifest.json file
with at least four key properties (name, short_name, start_url, and
display) and a minimum set of required icons.

Getting Ready Chapter 1

[34]

For those interested in reading about this directly from the source,
here's the original link from the Google Developers website:

https:/ ​/ ​developers. ​google. ​com/ ​web/ ​progressive- ​web- ​apps/ ​.​

In addition, here are two follow-up posts from Alex
Russell's Infrequently Noted blog:

https:/ ​/ ​infrequently. ​org/​2015/ ​06/ ​progressive- ​apps- ​escaping-
tabs- ​without- ​losing- ​our-​soul/ ​.
https:/ ​/ ​infrequently. ​org/​2016/ ​09/ ​what- ​exactly- ​makes-
something- ​a-​progressive- ​web- ​app/ ​.

For those who don't know, Alex Russell has worked as a senior staff
software engineer at Google since December 2008.

Although having some similarities, PWAs and SPAs are two different concepts, have
different requirements, and differ in many important aspects. As we can see, none of
the PWA requirements mentioned previously are referring to Single-Page
Applications or server-side round trips. A Progressive Web App can work within a
single HTML page and AJAX-based requests (thus also being an SPA), but it could
also request other server-rendered (or static) pages and/or perform standard HTTP
GET or POST requests, much like an MPA. It's also the opposite: any SPA can
implement any single PWA technical criteria, depending on the product owner's
requirements (more on that later), the server-side and client-side frameworks
adopted, and the developer's ultimate goal.

Since we're going to use Angular, which is all about developing Single-Page
Applications, and also ships with a strong and steady service worker implementation
since version 5, we are fully entitled to take advantage of the best of both worlds. For
this very reason, we're going to use service workers – along with the benefits of
increased reliability and performance they provide – whenever we need to, all while
keeping a solid SPA approach. Furthermore, we're definitely going to implement
some strategic HTTP round trips (and/or other redirect-based techniques) whenever
we can profitably use a microservice to lift off some workload from our app, just like
any good Native Web Application is meant to do.

Are all these features able to respond to modern market needs? Let's try to find it out.

https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/

Getting Ready Chapter 1

[35]

Product owner expectations
One of the most interesting, yet underrated, concepts brought out by many modern
Agile software development frameworks, such as Scrum, is the importance given to
the meanings and definitions of roles. Among these, there's nothing as important as
the product owner, also known as the customer in Extreme Programming
methodology, or customer representative elsewhere. They're the ones who bring to
the development table the expectations we'll struggle to satisfy. They will tell us
what's most important to deliver and when they will prioritize our work based on its
manifest business value rather than its underlying architectural value. They'll be
entitled by management to make decisions and make tough calls, which is sometimes
great, sometimes not; this will often have a big impact on our development schedule.
To cut it short, they're the ones in charge of the project; that's why, in order to deliver
a web application matching their expectancy, we'll need to understand their vision
and feel it as if it were our own.

This is always true, even if the project's product owner is our dad, wife, or best friend:
that's how it works.

Now that we have made that clear, let's take a look at some of the most common
product owner's expectations for a typical web-based SPA project. We ought to see
whether the choice of using ASP.NET Core and Angular will be good enough to
fulfill each one of them, as follows:

Early release(s): No matter what we're selling, the customer will always
want to see what he's buying. For example, if we plan to use an Agile
development framework such as Scrum, we'll have to release a potentially
shippable product at the end of each sprint. If we are looking to adopt a
Waterfall-based approach, we're going to have milestones, and so on. One
thing is for sure, the best thing we can do in order to efficiently organize
our development efforts will be to adopt an iterative and/or modular-
oriented approach. ASP.NET Core and Angular, along with the strong
separation of concerns granted by their underlying MVC- or MVVM-based
patterns, will gracefully push us into the mindset needed to do just that.

Getting Ready Chapter 1

[36]

GUI over back-end: We'll often be asked to work on the GUI and front-end
functionalities because that will be the only really viewable and measurable
thing for the customer. This basically means that we'll have to mock the
data model and start working on the front-end as soon as possible, delaying
everything that relies under the hood, even if that means leaving it empty;
we can say that the hood is what we need the most. Note that this kind of
approach is not necessarily bad; by all means, we won't do that just
to satisfy the product owner's expectations. On the contrary, the choice of
using ASP.NET Core along with Angular will grant us the chance to easily
decouple the presentation layer and the data layer, implementing the first
and mocking the latter, which is a great thing to do. We'll be able to see
where we're going before wasting valuable time or being forced to make
potentially wrong decisions. ASP.NET Core's Web API interface will
provide the proper tools to do that by allowing us to create a sample web
application skeleton in a matter of seconds using the Controller templates
available within Visual Studio and in-memory data contexts powered by
Entity Framework Core, which we'll be able to access using Entity models
and code first. As soon as we do that, we'll be able to switch to GUI design
using the Angular presentation layer toolbox as much as we want until we
reach the desired results. Once we're satisfied, we'll just need to properly
implement the Web API Controller interfaces and hook up the actual data.
Fast completion: None of the preceding things will work unless we also
manage to get everything done in a reasonable time span. This is one of the
key reasons to choose to adopt a server-side framework and a client-side
framework working together with ease. ASP.NET Core and Angular are
the tools of choice, not only because they're both built on a solid, consistent
ground, but also because they're meant to do precisely that – get the job
done on their respective sides and provide a usable interface to the other
partner.
Adaptability: As stated by the Agile manifesto, being able to respond to
change requests is more important than following a plan. This is especially
true in software development where we can even claim that anything that
cannot handle change is a failed project. That's another great reason to
embrace the separation of concerns enforced by our two frameworks of
choice, as this grants the developer the ability to manage—and even
welcome, to some extent—most of the layout or structural changes that will
be expected during the development phase.

Getting Ready Chapter 1

[37]

A few lines ago, we mentioned Scrum, which is one of the most
popular Agile software development frameworks out there. Those
who don't know it yet should definitely take a look at what it can
offer to any results-driven team leader and/or project manager.
Here's a good place to start:

https:/ ​/ ​en. ​wikipedia. ​org/​wiki/ ​Scrum_ ​(software_ ​development).

For those who are curious about the Waterfall model, here's a good
place to learn more about it:

https:/ ​/ ​en. ​wikipedia. ​org/​wiki/ ​Waterfall_ ​model.

That's about it. Note that we didn't cover everything here as it will be impossible
without knowing an actual assignment. We just tried to give an extensive answer to
the following general question: if we were to build an SPA and/or a PWA, would
ASP.NET Core and Angular be an appropriate choice? The answer is undoubtedly
yes, especially when used together.

Does this mean that we're done already? Not a chance, as we have no intention of
taking this assumption for granted. Conversely, it's time for us to demonstrate this by
ceasing to speak in general terms and start to put things in motion. That's precisely
what we're going to do in the next section: prepare, build, and test a sample Single-
Page Application project.

A sample SPA project
What we need now is to conceive a suitable test case scenario similar to the ones we
will eventually have to deal with – a sample SPA project with all the core aspects we
would expect from a potentially shippable product.

In order to do this, the first thing we need to do is to become our own customer for a
minute and come up with an idea; a vision to share with our other self. We'll then be
able to put our developer shoes back on and split our abstract plan into a list of items
we'll need to implement; these will be the core requirements of our project. Finally,
we'll set up our workstation by getting the required packages, adding the resource
files, and configuring both the ASP.NET Core and Angular frameworks in the Visual
Studio IDE.

https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model

Getting Ready Chapter 1

[38]

Not your usual Hello World!
The code we're going to write within this book won't be just a shallow demonstration
of full-stack development concepts; we won't throw some working code here and
there and expect you to connect the dots. Our objective is to create solid, realistic web
applications – with server-side web APIs and client-side UIs – using the frameworks
we've chosen, and we're also going to do that following the current development best
practices.

Each chapter will be dedicated to a single core aspect. If you feel like you already
know your way there, feel free to skip to the next one. Conversely, if you're willing to
follow us through the whole loop, you'll have a great journey through the most useful
aspects of ASP.NET Core and Angular, as well as how they can work together to
deliver the most common and useful web-development tasks, from the most trivial
ones to the more complex beasts. It's an investment that will pay dividends as it will
leave you with a maintainable, extensible, and well-structured project, plus the
knowledge needed to build your own. The following chapters will guide us
through such a journey. During that trip, we'll also learn how to take care of some
important high-level aspects such as SEO, security, performance issues, best coding
practices, and deployment, as they will become very important if/when our
applications will be eventually published in a production environment.

To avoid making things too boring, we'll try to pick enjoyable themes and scenarios
that will also have some usefulness in the real world: to better understand what we
mean – no spoilers here – you'll just have to keep reading.

Preparing the workspace
The first thing we have to do is set up our workstation; it won't be difficult because
we only need a small set of essential tools. These include Visual Studio 2019, an
updated Node.js runtime, a development web server (such as the built-in IIS Express),
and a decent source code control system such as Git, Mercurial, or Team Foundation.
We will take the latter for granted as we most likely already have it up and running.

In the unlikely case you don't, you should really make amends
before moving on! Stop reading, go to
www.github.com, www.bitbucket.com or whichever online SCM
service you like the most, create a free account, and spend some
time learning how to effectively use these tools; you won't regret it,
that's for sure.

http://www.github.com
http://www.bitbucket.com

Getting Ready Chapter 1

[39]

During the next sections, we'll set up the web application project, install or upgrade
the packages and libraries, and build and eventually test the result of our work.
However, before doing that, we're going to spend a couple of minutes in order to
understand a very important concept that is required to properly use this book
without getting (emotionally) hurt – at least in my opinion.

Disclaimer – do (not) try this at home
There's something very important that we need to understand before proceeding. If
you're a seasoned web developer, you will most likely know about it already;
however, since this book is for (almost) everyone, I feel like it's very important to deal
with this matter as soon as possible.

This book will make extensive use of a number of different programming tools,
external Components, third-party libraries, and so on. Most of them, such as
TypeScript, NPM, NuGet, most .NET Core frameworks/packages/runtimes, and so
on, are shipped together with Visual Studio 2019, while others, such as Angular, its
required JS dependencies and other third-party server-side and client-side packages
will be fetched from their official repositories. These things are meant to work
together in a 100% compatible fashion; however, they are all subject to changes and
updates during the inevitable course of time. As time passes by, the chance that these
updates might affect the way they interact with each other and the project's health
will decrease.

The broken code myth
In an attempt to minimize the chances that this can occur, this book will always work
with fixed versions/builds of any third-party Component that can be handled using
the configuration files. However, some of them, such as Visual Studio and/or .NET
Framework updates, might be out of that scope and might bring havoc to the project.
The source code might cease to work, or Visual Studio could suddenly be unable to
properly compile it.

Getting Ready Chapter 1

[40]

When something like that happens, the less-experienced person will always be
tempted to put the blame on the book itself. Some of them may even start thinking
something like this:

There are a lot of compile errors, hence the source code must be broken!

Alternatively, they may think like this:

The code sample doesn't work: the author must have rushed things here and there,
and forgot to test what he was writing.

It goes without saying that such hypotheses are rarely true, especially considering the
amount of time that the authors, editors, and technical reviewers of these books
spend in writing, testing, and refining the source code before building it up, making it
available on GitHub, and often even publishing working instances of the resulting
applications to worldwide public websites.

The GitHub repository for this book can be found here:

https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​ASP. ​NET- ​Core- ​3-​and-
Angular- ​9- ​Third- ​Edition

It contains a Visual Studio solution file for each chapter
(Chapter_01.sln, Chapter_02.sln and so on), as well as an
additional solution file (All_Chapters.sln) containing the source
code for all the chapters.

Any experienced developer will easily understand that most of these things couldn't
even be done if there was some broken code somewhere; there's no way this book can
even attempt to hit the shelves unless it comes with a 100% working source code,
except for a few possible minor typos that will quickly be reported to the publisher
and thus fixed within the GitHub repository in a short while. In the unlikely case that
it looks like it doesn't, such as raising unexpected compile errors, the novice
developer should spend a reasonable amount of time trying to understand the root
cause.

https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition
https://github.com/PacktPublishing/ASP.NET-Core-3-and-Angular-9-Third-Edition

Getting Ready Chapter 1

[41]

Here's a list of questions they should try to answer before anything else:

Am I using the same development framework, third-party libraries,
versions, and builds adopted by the book?
If I updated something because I felt like I needed to, am I aware of the
changes that might affect the source code? Did I read the relevant
changelogs? Have I spent a reasonable amount of time looking around for
breaking changes and/or known issues that could have had an impact on
the source code?
Is the book's GitHub repository also affected by this issue? Did I try to
compare it with my own code, possibly replacing mine?

If the answer to any of these questions is No, then there's a good chance that the
problem is not ascribable to this book.

Stay hungry, stay foolish, yet be responsible as well
Don't get me wrong: whenever you want to use a newer version of Visual Studio,
update your Typescript compiler or upgrade any third-party library, which you are
encouraged to do. This is nothing less than the main scope of this book – making you
fully aware of what you're doing and capable of, way beyond the given code samples.

However, if you feel you're ready to do that, you will also have to adapt the code
accordingly; most of the time, we're talking about trivial stuff, especially these days
when you can Google the issue and/or get the solution on StackOverflow. They
changed the typings? Then you need to load the new typings. They moved the class
somewhere else? Then you need to find the new namespace and change it
accordingly, and so on.

That's about it – nothing more, nothing less. The code reflects the passage of time; the
developer just needs to keep up with the flow, performing minimum changes to it
when required. You can't possibly get lost and blame someone other than yourself if
you update your environment and fail to acknowledge that you have to change a
bunch of code lines to make it work again.

Getting Ready Chapter 1

[42]

Am I implying that the author is not responsible for the source code of this book? It's
the exact opposite; the author is always responsible. They're supposed to do their best
to fix all the reported compatibility issues while keeping the GitHub repository
updated. However, you should also have your own level of responsibility; more
specifically, you should understand how things work for any development book and
the inevitable impact of the passage of time on any given source code. No matter how
hard the author can work to maintain it, the patches will never be fast or
comprehensive enough to make these lines of code always work on any given
scenario. That's why the most important thing you need to understand – even before
the book topics – is the most valuable concept in modern software development:
being able to efficiently deal with the inevitable changes that will always occur.

Whoever refuses to understand that is doomed; there's no way around it.

Setting up the project
Assuming that we have already installed Visual Studio 2019 and Node.js, here's what
we need to do:

Download and install the .NET Core SDK1.
Check that the .NET CLI will use that SDK version2.
Create a new .NET Core and Angular project3.
Check out the newly created project within Visual Studio4.
Update all the packages and libraries to our chosen versions5.

Let's get to work.

Installing the .NET Core SDK
We can download the latest version from either the official Microsoft URL (https:/ ​/
dotnet.​microsoft. ​com/ ​download/ ​dotnet- ​core) or from the GitHub official release
page (https:/​/​github. ​com/ ​dotnet/ ​core/ ​blob/ ​master/ ​release- ​notes/ ​README. ​md).

https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://github.com/dotnet/core/blob/master/release-notes/README.md
https://dotnet.microsoft.com/download/dotnet-core

Getting Ready Chapter 1

[43]

The installation is very straightforward – just follow the wizard until the end to get
the job done, as follows:

The whole installation process shouldn't take more than a couple of minutes.

Checking the SDK version
Once the .NET Core SDK has been installed, we need to confirm that the new SDK
PATH has been properly set and/or that the .NET CLI will actually use it. The fastest
way to check that is opening a Command Prompt and typing the following:

> dotnet --help

Be sure that the .NET CLI executes without issue and that the given version number
is the same as we installed a moment ago.

Getting Ready Chapter 1

[44]

If the prompt is unable to execute the command, go to Control
Panel | System | Advanced System Settings | Environment
Variables and check that the C:\Program Files\dotnet\ folder
is present within the PATH environment variable; manually add it if
needed.

Creating the .NET Core and Angular project
The next thing we have to do is create our first .NET Core plus Angular project – in
other words, our first app. We'll do that using the Angular project template shipped
with the .NET Core SDK as it provides a convenient starting point by adding all the
required files and also a general-purpose configuration that we'll be able to customize
later on to better suit our needs.

From the command line, create a root folder that will contain all our projects and get
inside it.

In this book, we're going to use \Projects\ as our root folder: non-
experienced developers are strongly advised to use the same folder
to avoid possible path errors and/or issues related to path names
being too long (Windows 10 has a 260-character limit that can create
some issues with some deeply nested NPM packages). It would also
be wise to use something other than the C: drive to avoid
permission issues.

Once there, type the following command to create the Angular app:

> dotnet new angular -o HealthCheck

This command will create our first Angular app in the C:\Projects\HealthCheck\
folder. As we can easily guess, its name will be HealthCheck: there's a good reason
for such a name, as we're going to see in a short while (no spoilers, remember?).

Opening the new project in Visual Studio
It's now time to launch Visual Studio 2019 and perform a quick checkup of our newly
created project. This can be done by either double-clicking on the
HealthCheck.csproj file or through the VS2019 main menu
(File | Open | Project/Solution).

Getting Ready Chapter 1

[45]

Once done, we should be able to see our project's source tree in all its lightweight
glory, as shown in the following screenshot:

As we can see from the previous screenshot, it's a rather compact boilerplate that only
contains the required .NET Core and Angular configuration files, resources, and
dependencies: just what we need to start coding!

Getting Ready Chapter 1

[46]

However, before doing that, let's continue our brief review. As we can see by looking
at the various folders, the working environment contains the following:

The default ASP.NET MVC /Controllers/ and /Pages/ folders, both
containing some working samples.
The /ClientApp/src/ folder with some TypeScript files containing the
source code of a sample Angular app.
The /ClientApp/e2e/ folder containing some sample E2E tests built with
the Protractor testing framework.
The /wwwroot/ folder, which will be used by Visual Studio to build an
optimized version of the client-side code whenever we need to execute it
locally or have it published elsewhere. That folder is initially empty, but it
will be populated upon the project's first run.

If we spend some time browsing through these folders and taking a look at their
content, we will see how the .NET Core developers did a tremendous job in easing
the .NET with the Angular project setup process. If we compare this boilerplate with
the built-in Angular 2.x/5.x templates shipped with Visual Studio 2015/2017, we will
see huge improvement in terms of readability and code cleanliness, as well as a better
file and folder structure. Also, those who fought with task runners such as Grunt or
Gulp and/or client-side building tools such as webpack in the recent past will most
likely appreciate the fact that this template is nothing like that: all the packaging,
building, and compiling tasks are entirely handled by Visual Studio via the
underlying .NET Core and Angular CLIs, with specific loading strategies for
development and production.

Truth be told, the choice to use a pre-made template such as this one
comes with its flaws. The fact that the back-end (the .NET Core APIs)
and the front-end (the Angular app) are both hosted within a single
project can be very useful, and will greatly ease up the learning and
development phase, but it's not a recommended approach for
production.

Ideally, it would be better to split the server-side and the client-side
parts into two separate projects to enforce decoupling, which is
paramount when building microservice-based architectures. That
said, being able to work with the back-end and the front-end within
the same project is a good approach for learning, thus making these
templates an ideal approach for the purpose of a programming book
– and that's why we're going to always use them.

Getting Ready Chapter 1

[47]

Before moving on, we should definitely perform a quick test run to ensure that our
project is working properly. This is what the next section is all about.

Performing a test run
Luckily enough, performing a test run at this point is just as easy as hitting the Run
button or the F5 key:

This is an excellent consistency check to ensure that our development system is
properly configured. If we see the sample Angular SPA up and running, as shown in
the preceding screenshot, it means that we're good to go; if we don't, it probably
means that we're either missing something or that we've got some conflicting
software preventing Visual Studio and/or the underlying .NET Core and Angular
CLIs from properly compiling the project.

Getting Ready Chapter 1

[48]

In order to fix that, we can try to do the following:

Uninstall/reinstall Node.js, as we can possibly have an outdated version
installed.
Uninstall/reinstall Visual Studio 2019, as our current installation might be
broken or corrupted. The.NET Core SDK should come shipped with it
already; however, we can try reinstalling it as well.

If everything still fails, we can try to install VS2019 and the previously mentioned
packages in a clean environment (be it either a physical system or a VM) to overcome
any possible issue related to our current operating system configuration.

If none of these work, the best thing we can do is to ask for specific
support on the .NET Core community forum at https:/​/ ​forums.
asp. ​net/ ​1255. ​aspx/ ​1? ​ASP+NET+Core.

If we manage to successfully perform the test run, it means that the sample app is
working: we're ready to move on.

Summary
So far, so good; we've just set up a working skeleton of what's about to come. Before
moving on, let's do a quick recap of what we just did (and arguably learned) in this
chapter.

We briefly described our platforms of choice – ASP.NET Core and Angular – and
acknowledged their combined potential in the process of building a modern web
application. We spent some valuable time recollecting what's happened in these last 3
years, and summarizing the efforts of both development teams to reboot and improve
their respective frameworks. These recaps were very useful to enumerate and
understand the main reasons why we're still using them over their ever-growing
competitors.

https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core
https://forums.asp.net/1255.aspx/1?ASP+NET+Core

Getting Ready Chapter 1

[49]

Right after that, we did our best to understand the differences between the various
approaches that can be adapted to create web apps nowadays: SPAs, MPAs,
and PWAs. We also explained that, since we'll be using .NET Core and Angular, we'll
stick to the SPA approach, but we'll also implement most PWA features such
as service workers and web manifest files. In an attempt to reproduce a realistic
production-case scenario, we also went through the most common SPA features, first
from a technical point of view, and then putting ourselves in the shoes of a typical
product owner while trying to enumerate their expectations.

Last, but not least, we learned how to properly set up our development environment;
we chose to do that using the latest Angular SPA template shipped with the .NET
Core SDK, thus adopting the standard ASP.NET Core approach. We created our app
using the .NET Core CLI and then tested it on Visual Studio to ensure it was working
properly.

In the next chapter, we'll take an extensive look at the sample app we just created in
order to properly understand how the .NET Core back-end and the Angular front-
end perform their respective tasks and what they can do together.

Suggested topics
Agile development, Scrum, Extreme Programming, MVC and MVVM architectural
patterns, ASP.NET Core, .NET Core, Roslyn, CoreCLR, RyuJIT, Single-Page
Application (SPA), Progressive Web Application (PWA), Native Web Application
(NWA), Multi-Page Application (MPA), NuGet, NPM, ECMAScript 6, JavaScript,
TypeScript, webpack, SystemJS, RxJS, Cache-Control, HTTP Headers, .NET
middleware, Angular Universal, server-side rendering (SSR), Ahead-of-Time (AOT)
compiler, service workers, web manifest files.

References
Native Web Apps, Henrik Joreteg, 2015: https:/ ​/​blog. ​andyet. ​com/ ​2015/
01/ ​22/ ​native- ​web- ​apps/ ​

Manifesto for Agile Software Development, Kent Beck, Mike Beedle, and many
others, 2001: https:/ ​/​agilemanifesto. ​org/ ​

ASP.NET 5 is dead – Introducing ASP.NET Core 1.0 and .NET Core
1.0: http:/ ​/​www. ​hanselman. ​com/ ​blog/
ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10. ​aspx

https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://blog.andyet.com/2015/01/22/native-web-apps/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx
http://www.hanselman.com/blog/ASPNET5IsDeadIntroducingASPNETCore10AndNETCore10.aspx

Getting Ready Chapter 1

[50]

An Update on ASP.NET Core and .NET Core: https:/ ​/​blogs. ​msdn.
microsoft. ​com/ ​webdev/ ​2016/​02/ ​01/​an- ​update- ​on- ​asp- ​net- ​core-
and- ​net- ​core/ ​

ASP.NET Core 1.1.0 release notes: https:/ ​/​github. ​com/​aspnet/
AspNetCore/ ​releases/ ​1. ​1.​0
ASP.NET Core 1.1.0 Commits list: https:/ ​/​github. ​com/ ​dotnet/ ​core/
blob/ ​master/ ​release- ​notes/ ​1. ​1/​1.​1- ​commits. ​md

ASP.NET Core 2.1.0 release notes: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​US/
aspnet/ ​core/ ​release- ​notes/ ​aspnetcore- ​2. ​1

ASP.NET Core 2.1.0 Commits list: https:/ ​/​github. ​com/ ​dotnet/ ​core/
blob/ ​master/ ​release- ​notes/ ​2. ​1/​2.​1. ​0-​commit. ​md

ASP.NET Core 2.2.0 release notes: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​US/
aspnet/ ​core/ ​release- ​notes/ ​aspnetcore- ​2. ​2

ASP.NET Core 2.2.0 Commits list: https:/ ​/​github. ​com/ ​dotnet/ ​core/
blob/ ​master/ ​release- ​notes/ ​2. ​2/​2.​2. ​0/​2. ​2.​0-​commits. ​md

ASP.NET Core 3.0.0 release notes: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/
dotnet/ ​core/ ​whats- ​new/ ​dotnet- ​core- ​3-​0
ASP.NET Core 3.0 releases page: https:/ ​/​github. ​com/ ​dotnet/ ​core/
tree/ ​master/ ​release- ​notes/ ​3. ​0
ASP.NET Core 3.1.0 release notes: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/
dotnet/ ​core/ ​whats- ​new/ ​dotnet- ​core- ​3-​1

Libscore: JavaScript library usage stats: http:/ ​/​libscore. ​com/ ​#libs

Usage of JavaScript libraries for websites: https:/ ​/​w3techs. ​com/
technologies/ ​overview/ ​javascript_ ​library/ ​all

Miško Hevery and Brad Green - Keynote - NG-Conf 2014: https:/ ​/​www.
youtube. ​com/ ​watch? ​v= ​r1A1VR0ibIQ

AngularJS 1.7.9 Changelog: https:/ ​/​github. ​com/ ​angular/ ​angular. ​js/
blob/ ​master/ ​CHANGELOG. ​md

ASP.NET Core and Angular 2: https:/ ​/​www. ​packtpub. ​com/
application- ​development/ ​aspnet- ​core- ​and- ​angular- ​2

ASP.NET Core 2 and Angular 5: https:/ ​/​www. ​packtpub. ​com/
application- ​development/ ​aspnet- ​core- ​2- ​and-​angular- ​5

ASP.NET Core 2 and Angular 5 - Video Course: https:/ ​/​www. ​packtpub.
com/ ​web- ​development/ ​asp- ​net- ​core- ​2-​and- ​angular- ​5- ​video

Angular Update Guide: https:/ ​/​update. ​angular. ​io

Angular Language Service: https:/ ​/​angular. ​io/ ​guide/ ​language-
service

https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://blogs.msdn.microsoft.com/webdev/2016/02/01/an-update-on-asp-net-core-and-net-core/
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/aspnet/AspNetCore/releases/1.1.0
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://github.com/dotnet/core/blob/master/release-notes/1.1/1.1-commits.md
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.1
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://github.com/dotnet/core/blob/master/release-notes/2.1/2.1.0-commit.md
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://docs.microsoft.com/en-US/aspnet/core/release-notes/aspnetcore-2.2
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://github.com/dotnet/core/blob/master/release-notes/2.2/2.2.0/2.2.0-commits.md
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://github.com/dotnet/core/tree/master/release-notes/3.0
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
https://docs.microsoft.com/en-us/dotnet/core/whats-new/dotnet-core-3-1
http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
http://libscore.com/#libs
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://www.youtube.com/watch?v=r1A1VR0ibIQ
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://github.com/angular/angular.js/blob/master/CHANGELOG.md
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-and-angular-2
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/application-development/aspnet-core-2-and-angular-5
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://www.packtpub.com/web-development/asp-net-core-2-and-angular-5-video
https://update.angular.io
https://update.angular.io
https://update.angular.io
https://update.angular.io
https://update.angular.io
https://update.angular.io
https://update.angular.io
https://update.angular.io
https://update.angular.io
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service
https://angular.io/guide/language-service

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Ready
	Technical requirements
	Two players, one goal
	The ASP.NET Core revolution
	ASP.NET Core 1.x
	ASP.NET Core 2.x
	ASP.NET Core 3.x

	What's new in Angular?
	GetAngular
	AngularJS
	Angular 2
	Angular 4
	Angular 5
	Angular 6
	Angular 7
	Angular 8
	Angular 9

	Reasons for choosing .NET Core and Angular

	A full-stack approach
	SPAs, NWAs, and PWAs
	Single-page application
	Native web application
	Progressive web application
	Product owner expectations

	A sample SPA project
	Not your usual Hello World!

	Preparing the workspace
	Disclaimer – do (not) try this at home
	The broken code myth
	Stay hungry, stay foolish, yet be responsible as well

	Setting up the project
	Installing the .NET Core SDK
	Checking the SDK version
	Creating the .NET Core and Angular project
	Opening the new project in Visual Studio
	Performing a test run

	Summary
	Suggested topics
	References

