JAVASCRIPT

FROM BEGINNER TO EXPERT
IN LESS THAN A WEEK

SITEPHEN BLUMENTHAL



JavaScript

By

Stephen Blumenthal



COPYRIGHT NOTICE

This e-book is copyright © 2017 ‘Stephen Blumenthal’ with all rights
reserved. It is illegal to copy, distribute, or create derivative works from this
ebook in whole or in part. No part of this report may be reproduced or
transmitted in any form whatsoever, electronic, or mechanical, including
photocopying, recording, or by any informational storage or retrieval system
without expressed written, dated and signed permission from the author.



Table Of Contents

Introduction to JavaScript

Uses of JavaScript

What JavaScript can do for you

Common uses of JavaScript
Enter DOM scripting

Other modern uses of JavaScript

Using JavaScript sensibly and responsibly
Get started with JavaScript
Getting Started: Setting Up your code.
JavaScript and HTML
HTML Basics
Do You Know What HTML Is?
Why You Should Know HTML Code if You Are Building a Website!
Learning JQuery
Why Create a jQuery plugin
Setting Up

The jQuery Plugin Structure
Adding Functionalities to Our Plugin

Javascript and CSS

Get Pseudo-Element Properties with JavaScript
classList API
Add and Remove Rules Directly to Stylesheets
Load CSS Files with a Loader

Essentials of CSS

CSS pointer-events




Loading spinner
Truncate text

Push up animation
Customization

Command Line Values
20 Essential CSS Tricks Every Designer Should Know

Different ways to run a JavaScript function

Learning CSS Syntax and Proper Application

CSS syntax comprises of three elements.

Inline Styles
Internal Styles

External Styles

Why is case sensitivity so much more important in JavaScript?

Understanding Comments
The Credibility Loop

JavaScript and Ajax
CSS - The Basics
What is CSS?
What can you do with CSS
How to get the Search Engines to See Your Copy
Syntax of CSS
Placement of CSS
Watch out for Spam

Conclusion



Introduction to JavaScript

JavaScript is an interpreted programming language, built on the ECMAScript
standard. The language definition is really broad since it can be defined as
aprocedural language based on prototypes, imperative, weakly typed, and
dynamic.

JavaScript is mainly used as a client side programming language
implemented as part of a web browser to allow developers an improved way
to implement user interface and dynamic features in web pages, although
there are implementations of JavaScript on the server side (SSJS) the
popularity of the language is due to the client side implementations alone.
JavaScript can also be found outside web applications, for example as a way
to add interactivity to PDF documents and desktop widgets.

JavaScript was designed with a similar syntax as C, although it takes names
and conventions from the Java programming language. However, despite the
name Java and JavaScript are not related and have different semantics and
purposes.

JavaScript was originally developed by Brendan Eich of Netscape under the
name Mocha, which was later renamed to LiveScript, to finally being called
JavaScript. The name change coincided approximately with the moment in
which Netscape added support for Java technology in its web browser
Netscape Navigator version 2.0B3 in late 1995. The name JavaScript was
confusion, giving the impression that the language is an extension of Java,
and it has been characterized by many as a marketing strategy for Netscape to
gain prestige and innovate in what were the new web programming
languages.



The following year Microsoft implemented a similar client side programming
languages as part of its Internet Explorer 3.0 web browser. Microsoft called
its client side language "jscript", to avoid problems related to the brand. The
Jscript term seems so similar that the both "javascript" and "jscript" are often
used interchangeably, but the specification of JScript is not 100% compatible
with the ECMA specifications.

To avoid these incompatibilities, the World Wide Web Consortium (W3C)
designed the standard Document Object Model (DOM, or document object
model), which was incorporated in the version 6 of Internet Explorer and
Netscape Navigator, Opera version 7, Mozilla Firefox since its first release,
and all modern browsers thereafter.

In 1997 there was a proposal to submit JavaScript to the standard of the
European Computer Manufacturers ' Association ECMA, which despite its
name is not European but international, based in Geneva. In June 1997, it was
adopted as an ECMA standard under the name of ECMAScript. JavaScript
also became an ISO standard.

Because of its standardization and the great adoption of the internet,
JavaScript has become the most used programming language in the planet.

Note: JavaScript is a registered trademark of Oracle Corporation. It is used
under license by the products created by Netscape Communications and
current entities such as the Mozilla Foundation.



Uses of JavaScript

JavaScript is present in most web pages today. Chances are that the page you
are looking at right now contains the code for JavaScript. Try this activity:
Right-click on a web page, then click 'View Source'. You should be able to
find the word JavaScript somewhere in the code of the page.

While HTML markup language allows web developers to format content,
JavaScript allows them to make the page dynamic. For example, HTML
allows for making text bold, creating text boxes, and creating buttons,
whereas JavaScript allows for changing text on the page, creating pop-up
messages, and validating text in text boxes to make sure re q uired fields have
been filled. JavaScript makes web pages more dynamic by allowing users to
interact with web pages, click on elements, and change the pages.



What JavaScript can do for you

Let’s take a step back and count the merits of JavaScript:

e JavaScript is very easy to implement. All you need to do is put your
code in the HTML document and tell the browser that it is
JavaScript.

e JavaScript works on web users’ computers - even when they are
offline!

e JavaScript allows you to create highly responsive interfaces that
improve the user experience and provide dynamic functionality,
without having to wait for the server to react and show another page.

e JavaScript can load content into the document if and when the user
needs it, without reloading the entire page — this is commonly
referred to as Ajax.

e JavaScript can test for what is possible in your browser and react
accordingly — this 1s called Principles of unobtrusive JavaScript or
sometimes defensive Scripting.

e JavaScript can help fix browser problems or patch holes in browser
support — for example fixing CSS layout issues in certain browsers.

That is a lot for a language that until recently was laughed at by programmers
favouring “higher programming languages”. One part of the renaissance of
JavaScript is that we are building more and more complex web applications
these days, and high interactivity either requires Flash (or other plugins) or
scripting. JavaScript is arguably the best way to go, as it is a web standard, it
is supported natively across browsers (more or less — some things differ
across browsers, and these differences are discussed in appropriate places in
the articles that follow this one), and it is compatible with other open web
standards.






Common uses of JavaScript

The usage of JavaScript has changed over the years we’ve been using it. At
first, JavaScript interaction with the site was mostly limited to interacting
with forms, giving feedback to the user and detecting when they do certain
things. We used alert() to notify the user of something (see Figure 1),
confirm() to ask if something is OK to do or not and either prompt() or a
form field to get user input.

JavaScript

<localhost>

‘f'\ Are you sure you want to use this function on your
" web site?

| Stop executing scripts on this page { oK)

Figure 1: Telling the end user about errors using an alert() statement was all
we could do in the early days of JavaScript. Neither pretty nor subtle.

This lead mostly to validation scripts that stopped the user to send a form to
the server when there was a mistake, and simple converters and calculators.
In addition, we also managed to build highly useless things like prompts
asking the user for their name just to print it out immediately afterwards.

Another thing we used was document.write() to add content to the document.
We also worked with popup windows and frames and lost many a nerve and
pulled out hair trying to make them talk to each other. Thinking about most
of these technologies should make any developer rock forward and backward
and curl up into a fetal position stammering “make them go away”, so let's
not dwell on these things — there are better ways to use JavaScript!



Enter DOM scripting

When browsers started supporting and implementing the Document Object
Model (DOM), which allows us to have much richer interaction with web
pages, JavaScript started to get more interesting.

The DOM is an object representation of the document. The previous
paragraph for example (check out its source using view source) in DOM
speak is an element node with a nodeName of p. It contains three child nodes
— a text node containing “When browsers started supporting and
implementing the ” as its nodeValue, an element node with a nodeName of a,
and another text node with a nodeValue of *, which allows us to have much
richer interaction with web pages, JavaScript started to get more interesting.”.
The a child node also has an attribute node called href with a value and a
child node that is a text node with a nodeValue of “Document Object
Model(DOM)”.

You could also represent this paragraph visually using a tree diagram, as seen
in Figure 2.

Cantains the taxt "Whan
browsars started supporting
and implementing tha "

T

[text node]
i

Contains the text
"Document Object
Model [DOM)"

Containg the lext °, which
alows us to have much richar
interaction with web pages,
JavaScript started to get more
interesting.”



Figure 2: A visual representation of our sample DOM tree.

In human words you can say that the DOM explains both the types, the
values and the hierarchy of everything in the document — you don’t need to
know anything more for now.

e Access any element in the document and manipulate its look,
content and attributes.

e C(Create new elements and content and apply them to the document
when and if they are needed.

This means that we don’t have to rely on windows, frames, forms and ugly
alerts any longer, and can give feedback to the user in the document in a
nicely styled manner, as indicated in Figure 3.

Dﬂp’s! We couldn® save your profile as entered. Please take a look at the following:
* Login has already bédn Laken

* Emall addredd doednl match confirmation

Desired Username

Emall | sample@sample com
Retype Email
Password .

Retyps Peisword ==

Figure 3: Using the DOM you can create nicer and less intrusive error
messages.



Together with event handling this is a very powerful arsenal to create
interactive and beautiful interfaces.

Event handling means that our code reacts to things that happen in the
browser. This could be things that happen automatically — like the page
finishing loading — but most of the time we react to what the user did to the
browser.

Users might resize the window, scroll the page, press certain keys or click on
links, buttons and elements using the mouse. With event handling we can
wait for these things to happen and tell the web page to respond to these
actions as we wish. Whereas in the past, clicking any link would take the site
visitor to another document, we can now hijack this functionality and do
something else like showing and hiding a panel or taking the information in
the link and using it to connect to a web service.



Other modern uses of JavaScript

And this is basically what we are doing these days with JavaScript. We
enhance the old, tried and true web interface — clicking links, entering
information and sending off forms, etc. — to be more responsive to the end
user. For example:

A sign-up form can check if your user name is available when you enter it,
preventing you from having to endure a frustrating reload of the page.

A search box can give you suggested results while you type, based on what
you’ve entered so far (for example “bi1” could bring up suggestions to choose
from that contain this string, such as “bird”, “big” and “bicycle”). This usage
pattern is called autocomplete

Information that changes constantly can be loaded periodically without the
need for user interaction, for example sports match results or stock market
tickers.

Information that is a nice-to-have and runs the risk of being redundant to
some users can be loaded when and if the user chooses to access it. For
example the navigation menu of a site could be 6 links but display links to
deeper pages on-demand when the user activates a menu item.

JavaScript can fix layout issues. Using JavaScript you can find the position
and area of any element on the page, and the dimensions of the browser
window. Using this information you can prevent overlapping elements and
other such issues. Say for example you have a menu with several levels; by
checking that there is space for the sub-menu to appear before showing it you
can prevent scroll-bars or overlapping menu items.

JavaScript can enhance the interfaces HTML gives us. While it is nice to
have a text input box you might want to have a combo box allowing you to
choose from a list of preset values or enter your own. Using JavaScript you
can enhance a normal input box to do that.



You can use JavaScript to animate elements on a page — for example to
show and hide information, or highlight specific sections of a page — this
can make for a more usable, richer user experience.



Using JavaScript sensibly and responsibly

There is not much you cannot do with JavaScript — especially when you mix
it with other technologies like Canvas or SVG. However, with great power
comes great responsibility, and you should always remember the following
when using JavaScript.

e JavaScript might not be available — this is easy to test for so not
really a problem. Things that depend on JavaScript should be
created with this in mind however, and you should be careful
that your site does not break (ie essential functionality is not
available) if JavaScript is not available.

e If the use of JavaScript does not aid the user in reaching a goal
more q uickly and efficiently you are probably using it wrong.

e Using JavaScript we often break conventions that people have
got used to over the years of using the web (for example clicking
links to go to other pages, or a little basket icon meaning
“shopping cart”). Whilst these usage patterns might be outdated
and inefficient, changing them still means making users change
their ways — and this makes humans feel uneasy. We like being
in control and once we understand something, it is hard for us to
deal with change. Your JavaScript solutions should feel naturally
better than the previous interaction, but not so different that the
user cannot relate to it via their previous experience. If you
manage to get a site visitor saying “ah ha — this means I don’t
have to wait” or “Cool — now I don’t have to take this extra
annoying step”— you have got yourself a great use for
JavaScript.

e JavaScript should never be a security measure. If you need to
prevent users from accessing data or you are likely to handle
sensitive data then don’t rely on JavaScript. Any JavaScript
protection can easily be reverse engineered and overcome, as all



the code is available to read on the client machine. Also, users
can just turn JavaScript off in their browsers.



Get started with JavaScript



Getting Started: Setting Up your code.

Where do your JavaScript codes go? Well, basically anywhere inside the

<htmlI> tags of your page. The beginning of your code begins with <script
type="text/javascript"> and ends with </script>

<htmlI>

<head><title>This is an example page</title></head>

<body>

Welcome to the JavaScript course!

<script type="text/javascript'">

<!--

document.write("Hi there. This text is written using JavaScript!")
//-->

</script>

</body>

</html>

Output: Hi there. This text is written using JavaScript!

As you can see, we began our script with the tag <script
language="type/javascript"> The part in red is purely optional, as the browser
by default assumes a <script> tag to be JavaScript, though you should include
it nevertheless for validation reasons. The second and next to last lines of the
above example are <!-- and //-->, which are HTML comment tags tailored for
JavaScript. It is recommended you include them to hide your code against
very old browsers that don't support JavaScript. If you don't include them and



	Introduction tо JavaScript
	Uѕеѕ оf JavaScript
	What JаvаSсriрt саn dо for уоu
	Cоmmоn uѕеѕ of JаvаSсriрt
	Entеr DOM ѕсriрting
	Other mоdеrn uses of JаvаSсriрt
	Uѕing JavaScript sensibly and rеѕроnѕiblу

	Gеt started with JаvаSсriрt
	Gеtting Stаrtеd: Setting Uр уоur соdе.


