Java

for Absolute
Beginners

Learn to Program the Fundamentals
the Java 9+ Way

luliana Cosmina

Apress’

Java for Absolute
Beginners

Learn to Program the Fundamentals
the Java 9+ Way

luliana Cosmina

Apress’

Java for Absolute Beginners: Learn to Program the Fundamentals the Java 9+ Way

Tuliana Cosmina
Edinburgh, UK

ISBN-13 (pbk): 978-1-4842-3777-9 ISBN-13 (electronic): 978-1-4842-3778-6
https://doi.org/10.1007/978-1-4842-3778-6

Library of Congress Control Number: 2018964482

Copyright © 2018 by Iuliana Cosmina

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484237779. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3778-6

This book is dedicated to all men that told me
software engineering is not for women.

And to that one professor that told me I'm not PhD material.
How do ya’ like them apples?

Table of Contents

About the AUROKccoveemmssmnmnsmsssss s nn s nnnnnn s xiii
About the Technical REVIEWETccvcessssnsssssansssssssssssnsssssnsssssssssssnsssssnsssssnsssssnssnssns XV
AcknNoWIedgmentsccccuusemnnmmssssnnnmsssssssnsssssssnnssssssnnnssssssnnnssssssnnssssssnnnnsssssnnnnssssnnns Xvii
INtroductioncccicemnsenmssssnnmsssnnmsssnnsssansssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnnnnssnnnsns Xix
Chapter 1: An Introduction to Java and Its HiStorycccccmmmnnsennnnnssssnsssnssssnsnnnns 1
WHO ThiS BOOK IS FOF......ceiieercircerce e 2
How This BOOK IS STrUCLUIEA.........c.coeeeecrercrereseee s 3
CONVENTIONS ... sesese s sse e e e e s s e se s e s re e e e e e nae e s R e e e e e e nnnnnes 4
When Java Was Owned by Sun MICroSYSIEMS........c.cuecverereresesnsesssesessssesessesessse s sessesessesessnnes 5
Why IS Java POrabI@?ccvireiinirrnene st 8

Sun Microsystem’s Java VEISIONScocveeverenmrreserensessssesesssesessessssssssssesssssssssssssssssssssesenns 10
Oracle TAKES QVENcovecerrreiricserree s se e n s 15
What the FUtUre HoldS ... s 21

o (] (0|1 (O 21
Chapter 2: Preparing Your Development Environmentccccoccemnnnnsnnnnnnssssssnnnns 23
INSTAIIING JAVA.......coeicr e 24
The JAVA_HOME Environment Variable........c.cccuiiiiniiiiissssssssssssssssssssssssssssssssens 29
JAVA _HOME 0N WINAOWSuviiiiiiiiiiisiissinnsssssssssssssssssssssssssssssssssssansssnssanssssssssssssssasssanssanans 30
JAVA_HOME 0N MACOS.... ..ot sss s ssn s s ss s s s s s ss s sn s sn s s s sa s san s san s sanasanaes 35
JAVA_HOME 0N LINUX c.vuervecreeseessssesessesessesessssesessesessssesssssssssssssssnsssssssssssnsssssssssssssssssssssssssnns 36
INSTAIING GIAUIEcveeveeeereeree e e s nr s 37
INSTAIING GiL.....veeeeieeerese s r e r s 38
INSTAIlNG @ JAVA IDE.........ccoeeeieitrcere st se e s s st sa e e ae s p e e naennen 39

£ 11114 7R 47

TABLE OF CONTENTS

Chapter 3: Getting Your Feet Wet.........ccocccmmnnnnmmmmnnsssnnnmmssssssnmnssssssnssssssssssssssssnnsnnss 49
L] T TS 1T RS 49
Java Fundamental Building BIOCKSccccuiirnnininn s se s sessessens 56

ACCESS MOGIfIEIS ... s e n e r e e e nnnne s 60
INtroducCing MOTUIES.......coiiirre e e e e e r e e nne s 64
Configuring MOUUIEScovvirireresr e s e e e e nne s 67
Determining the Structure: A Java Project ... e 69
Explaining and Enriching the Hello WOrld! Class..........ccoverrnerereneressmsesesesesesessesessesessesesessesenns 89
SUMIMAIY ...ttt n e Re e e e e e e Re e s e e e nen e e e Re e Re e nen e e nsnnn s 96
Chapter 4: Java SyNtaX......ccusscenmemsssnnnsmssssnnnsessssnsnsessssnnnsessssnsnsssssnnnnsssssnnnnsssssnnnnnsnss 99
Base Rules of Writing Java COUEcccvvvrererrnneniererssersese s sessessessessssessessessssessessessesssssssessens 100
o T 16 1o T I L= T L 101
10 00T BT o 10 o OO 101
JAVA “GraAMMAI” ... s 103
JaVa [ABNTITIErSciviecc i —————— 106
Java COMMENTES ... s 107
B AT 0 o] 1= B 1 T 107
CIASSES ...uucueuerrsrsseseesess s 108
ENUMS . 125
INTEITACES ...ccveiccccri s 129
(-] 0 0] S 139
C L] T 1 PR 145
JaVva RESEIVEA WOIAS..........ccceeeeeercereec s se e se s s ae e e e nnenens 147
£ T T 151

Chapter 5: Data TYPeS....ccciruusummmmmssssnnnmsssssnsnmsssssnnnssssssnnsssssssnnnssssssnnnsssssnnnsessssnnnnss 153
Stack and HEap MEMOIY.......ccvvrererirrerere e s e e se e s sae e s sae s e e s e saesae e s e saesnes 153
Introduction 10 Java Data TYPESccucererirrin e s sa e s 159

Primitive Data TYPES ...c.ceverieriiriie s rer e s a e s s n e s a e s 159
Reference Data TYPESccvvvvrirre s re e s e e s s r e s sn e e 161

TABLE OF CONTENTS

JaVa PriMItIVE TYPES ettt a e s s e s s s n e s 165
The BOOIEAN TYPE....coceiieeriereritr et re e s s a e s s e e e s s n e e 165
THE CRAI TYPE ..o e e e e e s a e s 166
10T T T=T g o 11 111 14T 167
Real PriMiItIVES.covivieceseriniscsscse s 170

JAVA RETEIENCE TYPES ...uveeerereereerireree st st s e s e s s s e e sa e s st s e e sae s s e e a e sae s e e e e snesae e e e aesnesannaes 173
4 1S 177
LI (0T 1 L= O 183
ESCAPING CAraCIEIS. ...cccvuerreerererererserersessssessessessssessessesaesssessessessssessessesssssssessesassansensesaes 187
WEAPPET ClASSES..ueruerrerererersersesersersessesssssssessessesssssssessesssssssessessesssssssessessessssessessesssssssessesses 189
DAte TIME AP ... 191
L0017 (0] S 196
CONCUITENCY SPECITIC TYPES..euerrerrrrerrererressrsersersessesessessessessssessessesseses e ssesaeses e ssessesssssssesneses 201

£ 11134 7 206

Chapter 6: OPeratorsccccuussesmmsssssnsnmssssssnsmsssssnnnssssssnnnsssssnnnnessssnnnnessssnnnssssssnnnnss 207

The AsSIgNMENT OPEIatOr (=) ...cccevererrererrnseseseserreserrssesesese s s s srssesessssessssesessssssssnens 208

Explicit Type Conversion (type) and inStanCeof...........ccucevrerrnsesnsesnneses s sesesenns 211

0T TeT Ttz I 0] 0T = (0] £ ORI 214
L1 T 0 L] L (0 OO 214
3Ty Fe LT 0T (0] O 217
Relational OPerators. e e e 223
BitWiSe OPEIAtOrSccevvereerreirere s s p e s 227
BItWiSe NOT ...t e 227
BItWiISE ANDceuerieriiirere et e e bR e e e an 228
BitwiSe INCIUSIVE OR.......coceeiieircscree e 230
BitwiSe EXCIUSIVE QRcccceirierirresersne s sn s s se s sss s s s ssnsis 231
LOGICAI OPEIALOFScveceeveeriserirrese s p e r e nnnna e 233
Shift OPEIAIONSecerere e e e e s nne s 238
The EIVIS OPEIALOrccccvcererresirsine st s s 241

LT 11134 RS 242

vii

TABLE OF CONTENTS

Chapter 7: Controlling the FIOWccccusseemmmmssssnnnmssssssnnmssssssnssssssssnssssssssssssssssnnnss 243
if-1SE STATBMENT ... s 244
SWITCH STAIEMENL ... 250
LOOPING STAtEMENTS.......ccoveerereeree s 256

FOr SEALEMENTS......cceeececer e e nne s 257
WHIlE STAtEMENT ..o e 263
do-While STAtEMENT...........cceee s 268
Breaking Loops and SKipping SIEPS ..o 271
break STateMENt.........ccovciiccreser s 27
CONtINUE SEALEMENTcce e 273
return Statement ... ——————————— 275
Controlling the Flow Using try-catch ConsStructionsc.ccovvevrnnernsessnesensse e 277
£ 1§14 RS 280

Chapter 8: The Stream APIccoccemmmnnssnnmmmmsssnnmmsssssnmmsssssmmssssnsssss s 281
INtroduction t0 STrEAMScceeeerirr e s 281
Creating SIrEAMS ..o e b e e e nns 284

Creating Streams from CollECLIONS..........cccvcvvriniin s s 284
Creating Streams frOM AITAYSccccverennninine s s 287
Creating EmpPty STreams.........ccvinininnnsirsne e 289
Creating Finite STreams........ccciiiinin s e e 289
Streams of Primitives and Streams of Strings ..o 292
A Short Introduction 10 Optional ..o ———————— 295
HOW 10 USE SIrBAMS......ceivecrirererreesre s e s s ses s 298
Terminal Functions: forEach and forEachOrderedccovoerenreernresereeserese s 300
Intermediate Operation filter and Terminal Operation t0Array..........c.cccerierinrnininnsnsenens 302
Intermediate Operations map and flatMap and Terminal Operation collect..............c.c...... 303
Intermediate Operation sorted and Terminal Operation findFirstc.cccovvnininiinicnnenn 306
Intermediate Operation distinct and Terminal Operation count...........cccooevvvnininninicnenn 306
Intermediate Operation limit and Terminal Operations min and max..........c.cccceeevvieniennenn 307
Terminal Operations SUM and redUCE.........ccoceeerrrrrrienn s 307

viil

TABLE OF CONTENTS

Intermediate OPeration PEEK........ccvvvrererrrerreriere s s s e sae s s ssesaesesnesne s 308
Intermediate Operation skip and Terminal Operations findAny, anyMatch,
allMatch, and NONEMALICH ... —————————— 309
Debugging SIream COEcccvreeriicrnerire s e 310
SUMIMAIY ..ttt E e e e e b e e e e e AR e e e e e Re e Re R e e e e e Re R e e e e e aennn 314
Chapter 9: Debugging, Testing, and Documenting.......ccccuussssnnrsssssnnsssssssnnssssssnnnnss 317
(DL oo oo OSSR 317
T o 1 T P 318
Logging with SLF4J and LOghack..........ccccuerrminnenmnese s s ssssessnnes 337
Debug USiNG ASSEITIONS........cccveriereeressesese s 345
Step-by-Step DEDUGGINGc.ccvrrererererrrerere e e 348
Inspect Running Application Using Java TOOIS...........cccviernnnnnieninnnsnse e 351
Accessing the Java ProCESS APl ... s sess s ssanes 362
5] (1o OO 369
A Small Introduction t0 TESTING......c.ccerererirernserrneser s 370
TeSt COUE LOCALIONcovvuererreeriee s s s sre e sr s s 371
ApPPLICALION 10 TESTceivicseirererre s sr e nnna s 372
DOCUMENTING.....cecererereerercer s e ae s a e se s e s b e s e s s b e e e e e e R e ae e e e saeeae s e e e nannnees 397
£ 1134 7R 408
Chapter 10: Making Your Application Interactive.......cccousssemmnrnssssnnsssssssnssssssssnnnss 409
Reading Data from the Command LiNg ..o 409
Reading User Data USing SYSTEMLIN ..o 410
USING SCANNETcviireriece et p e b e ne s 411
Reading User Data with java.io.CoNnSO0Ie.........c.ccoceviiririninnnsn s 417
Build Applications USING SWINQ........cccccrreererenerenernsesessesesese s s sessssessssesssssssssssenns 420
INtrOdUCING JAVAFX ..o e 432
Internationalization ... —————————— 442
Build @ Webh APPIICALIONccevveeeriereresirserere s sese s sresessessessesessessessessssessessessesessesaessesssssssesaens 450
£ 1134 7 468

ix

TABLE OF CONTENTS

Chapter 11: Working with Filescccicunseemmmmsssssmnmmssssssnmsssssssssssssssssssssssssssssssssnnss 471
File HANAIBTS ... e 47
Path HANIEES......c.eeeeeeeeeeeecrr e 478
REAMING FIlBS ...ceceeeeereeericcrer e 482

Using Scanner 10 Read FileS.........coucvrererenernscsresesese s seanes 482
Using Files Utility Methods t0 Read Filesccoverererernsnnesesese s 484
Using Readers 10 Read Files.........c.ccovveeerenernnnresere s s 485
Using InputStream t0 Read Filesc.ccccoverrrnrrnenerese s 489
WIING FIlBS ..evveeeiecerese s n s ne e nnnne s 492
Writing Files Using Files Utility MEthodsccoveimrinrnnennesenese s sessesesnenens 492
Using Writers 10 WHe FleScccvveernrerereserssesesesess s sesse s sessssesnssensnnes 495
Using OutputStream to Write Filesccocvrvrrrrrnienrese s 499
Serialization and Deserialization...........c.ccvvernrennesnns s 502
Binary Serializationccovcevvenninnnns s 503
XML Serialization........ccoveeeerenerenesnsesssesessse s srsss s s s e sssssssssssssssssssssesesssssssenens 507
JSON Seri@lization..........ccoveernrernesennse s e 511
THE MEIA AP ... bbb 513
UsSing JavaFX IMage ClASSESccvrerrererrersersersssersessessessssessessessssessessesssssssessesssssssessessesssssssessens 526
£ 11134 7 529

Chapter 12: The Publish/Subscribe Framework...........ccccunnmmmmmmnmmmmsnssssssssssssnnns 531
Reactive Programming and the Reactive Manifesto..........ccorvrrnrennnenesinsnnsesssssses e 532
Using the JDK Reactive Streams APlcccoccerirmrnsennesnnese s ssssessssssessssesessesenns 536
Reactive Streams Technology Compatibility Kit..........cccovrrrriennrnininnsrsene e sesenaens 548
R 10 0 (0] (< A 21T T (0 SR 552
£ 1134 7R 558

Chapter 13: Garbage Collection..........ccccvssmrmssnmmsssnsmsssnsesssnssssssssssssssssssnssssnnsssas 559
Garbage ColleCtion BASICSccocoerrreererererereriresese s se s s 560

Oracle Hotspot JUM ArchiteCture.........coevvcnvriennninsnse s se e s 560
How Many Garbage Collectors Are THEIE?ccvvirrrerinnnsinse s ses e snes 564

TABLE OF CONTENTS

Working with GC from the COUE.........ccccvrererririerieresrs s sse s sesse e ssesssessessesassessessenes 571
Using the finalize() Method..........cccevririinirir e 571

Heap Memory STatiSHCSucvevierierriere st r e s saesae e saennes 578
[T 108 1= T T 584
Preventing GC from Deleting an ODJECtccvcvivvrrini e 587
USING WEaAK REFEIBINCEScvvveruerrrrerererresessesessessesessessesaessssessessesasssssessesaessssessessesssssssesnees 591
Garbage Collection EXCEptions @and CAUSESccvrerrererrersereresserseressesessessessessssessessessessssessenses 595
BT 1] 111 SRS 596
11T = 599

xi

About the Author

Tuliana Cosmina is currently a software engineer for NCR
Edinburgh. She has been writing Java code since 2002. She
has contributed to various types of applications, such as
experimental search engines, ERPs, track and trace, and
banking. During her career, she has been a teacher, a team
leader, software architect, a DevOps professional, and a
software manager.
She is a Spring-certified professional, as defined by Pivotal,

the makers of Spring Framework, Boot, and other tools.
She considers Spring the best Java framework to work with.

When she is not programming, she spends her time reading, blogging, learning to
play piano, travelling, hiking, or biking.

e You can find some of her personal work on her GitHub account at
https://github.com/iuliana.

e You can find her complete CV on her LinkedIn account at
www.linkedin.com/in/iulianacosmina.

e You can contact her at Iuliana.Cosmina@gmail.com.

xiii

https://github.com/iuliana
http://www.linkedin.com/in/iulianacosmina
http://www.Iuliana.Cosmina@gmail.com

About the Technical Reviewer

Wallace Jackson has been writing for leading multimedia publications about his

work in new media content development since the advent of Multimedia Producer
Magazine nearly two decades ago. He has authored a half-dozen Android book titles

for Apress, including four titles in the popular Pro Android series. Wallace received his
undergraduate degree in business economics from the University of California at Los
Angeles and a graduate degree in MIS design and implementation from the University of
Southern California. He is currently the CEO of Mind Tafty Design, a new media content
production and digital campaign design and development agency.

Acknowledgments

Here I am again, the main author of a technical book for the third time.

This book was quite challenging to write, because I had to quickly adapt to changes
made to the Java ecosystem. With the new six months interval release system, modules
being introduced, and backward compatibility thrown out the window, I found myself
with a project that stopped compiling and had to invest precious time into fixing it,
understand why it broke in the first place, and eventually adapt the book.

Writing books for beginners is tricky, because as an experienced developer, it might
be difficult to find the right examples and explain them in such a way that even a non-
technical person would easily understand them. That is why I am profoundly grateful to
Matthew Moodie and Mark Powers for all the support and advice they provided to keep
this book at beginner level. We have been working together for four years and it has been
a fruitful collaboration so far.

I would like to thank Wallace Jackson; his recommendations and corrections were
crucial for the final form of the book.

Apress has published many of the books that I have read and used to improve myself
professionally. It is a great honor to publish my fourth book with Apress, and it gives me
enormous satisfaction to be able to contribute to the “making” of a new generation of
Java developers.

I am grateful to all my friends who had the patience to listen to me complain about
sleepless nights and writer’s block. Thank you all for being supportive and making sure I
still had some fun while writing this book. You have no idea how dear you are to me.

I am thankful to John Mayer still, as his music provided yet again, a great
environment for my working nights.

A special thank you to Achim Wagner, whom I consider both a mentor and a dear
friend. He provided me with an environment and support to grow as a professional and
as a person, and I will miss working with him.

xvii

ACKNOWLEDGMENTS

A special thank you to the Bogza-Vlad family: Monica, Tinel, Cristina, and Stefan.
You are all close to my heart and this book might have been released later without your
support when I moved to Edinburgh.

And a very special thank-you in advance to all the passionate Java developers who
will find mistakes in the book and be so kind to write me about them so I can provide an
erratum and make this book even better.

xviii

Introduction

Even though I have been writing Java Applications since 2002 I don’t think I've ever dived
so deeply into the JVM as I did while writing this book. Most companies I've worked

for had their own code base when I joined them, and my work was mostly related to
designing, improving or maintaining one that already existed. It’s like making brownies
when you already have brownie mix. Writing this book has given me the opportunity to
get down to basics and work with basic ingredients—so, making brownies using eggs,
flower, cocoa, milk, and butter.

Java began in 1982 and was created by a handful of people. The most renowned
name linked to the beginning of Java is James Gosling, also known as the father of
Java, the language that is now used on over three billion devices. When Oracle bought
Sun Microsystems, developers were worried about Java's future, especially since its
main creator quit the company and went on to create what was thought to be Java’s
replacement: Scala. That will probably never happen. Java is still here.

Most banking applications are written in Java and because it is definitely dangerous
and costly to migrate these applications, Java will be here in 50 years, if not more. Java
began by making websites more dynamic and more entertaining, and ended up being
the basis for applications run on ATMs, cashier machines, computers, and mobile
devices. Sure, this would have been more difficult if Java wasn’t cross-platform.

The first Java version was officially released in 1996. Since then, ten more versions
have been released, with the latest one, Java 11, being released on 25th September 2018.
The work on Java 12 has already begun and the early access build is already available.

This book was written with the intention to cover the fundamental elements of the
language and of the JVM, especially the ones introduced in versions 9, 10, and 11.

The book provides a complete overview of the most important Java classes in the JVM,
all wrapped up in a multimodule project that compiles with Java 11 and Gradle 5.

Xix

INTRODUCTION

A group of reviewers has gone over the book, but if you notice any inconsistencies,
please send an email to editorial@apress.com, or directly to the author, and corrections
will be made and published in an erratum that will be uploaded to the official GitHub
repository for the book. The example source code for this book can be found on GitHub
or downloaded from the official book’s product page, located at www.apress.com/in/

book/9781484237779.
I truly hope you will enjoy using this book to learn Java as much as I enjoyed writing it.

http://www.apress.com/in/book/9781484237779
http://www.apress.com/in/book/9781484237779

CHAPTER 1

An Introduction to Java
and Its History

Java is currently one of the most influential programming languages. It all started in
1990, when an American company that was leading the revolution in the computer
industry decided to gather its best engineers together to design and develop a product
that would allow them to become an important player in the new emerging Internet
world. Among those engineers was James Arthur Gosling, a Canadian computer scientist
who is recognized as the “father” of the Java programming language. It would take five
years of design, programming, and one rename (from Oak to Java because of trademark
issues), but finally in 1996, Java 1.0 was released for Linux, Solaris, Mac, and Windows.

You might have the tendency to skip this chapter altogether. But I think it would be
a mistake. I was never much interested in the history of Java. I was using it for work. I
knew that James Gosling was the creator and that Oracle bought Sun, and that was pretty
much it. I never cared much about how the language evolved, where the inspiration
came from, or how one version was different from another. I started learning Java at
version 1.5, and I took a lot of things in the language for granted. So, when I was assigned
to a project running on Java 1.4, I was quite confused, because I did not know why
some of the code I wrote was not compiling. Although the IT industry is moving very
fast, there will always be that one client that has a legacy application. And knowing the
peculiarities of each Java version is an advantage, because you know the issues when
performing a migration.

When I started doing research for this book, I was mesmerized. The history of Java is
interesting because it is a tale of incredible growth, success of a technology, and how a
clash of egos in management almost killed the company that created it. Because even if
Java is the most used technology in software development, it is simply paradoxical that
the company that gave birth to it no longer exists.

© Iuliana Cosmina 2018
1. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_1

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

This chapter covers each version of Java to track the evolution of the language and
the Java virtual machine. You can find a timeline for versions 1.0 to 1.8 on the Oracle
official site at http://oracle.com/edgesuite.net/timeline/java./. But first, I'll
introduce the book.

Who This Book Is For

Most Java books for beginners start with the typical Hello World! example depicted here:

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

This code, when executed, prints Hello World!in the console. But if you have bought
this book, it is assumed that you want to develop real applications in Java, and get a real
chance when applying for a position as a Java developer. If this is what you want, if this
is who you are, a beginner with the wits and the desire to make full use of this language’s
power, then this book is for you. And that is why to start this book, a complex example is
used. We go over it in almost every section, when some part of it is clarified.

Java is a language with a syntax that is readable and based on the English language.
So, if you have a logical thinking and a little knowledge of the English language, it should
be obvious to you what the following code does without even executing it.

package com.apress.ch.one.hw;
import java.util.list;
public class Exampleo1l {

public static void main(String[] args) {

List<String> items = List.of("1", "a", "2", "a", "3", "a");

items.forEach(item -> {
if (item.equals("a")) {
System.out.println("A");
} else {

http://oracle.com/edgesuite.net/timeline/java./

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

System.out.println("Not A");

};

In this code example, a list of text values is declared; then the list is traversed, and when

atextis equal to "a", the letter "A" is printed in the console; otherwise, "Not A" is printed.
If you are an absolute beginner to programming, this book is for you, especially
because the sources attached to this book make use of algorithms and design patterns
commonly used in programming. So, if your plan is to get into programming and learn
a high-level programming language, read the book, run the examples, write your own
code, and you should have a good head start.
If you already know Java, you can use this book too because it covers the specifics of

Java versions 9, 10, and 11 (the EAP! release).

How This Book Is Structured

The chapter you are reading is an introductory one that covers a little bit of Java history,
showing you how the language has evolved and a glimpse into its future. Also, the mechanics
of executing a Java application are covered, so that you are prepared for Chapter 2. The
next chapter shows you how to set up a development environment and introduces you
to a simple application. In Chapters 3 to 7, the fundamental parts of the language are
covered: packages, modules, classes, objects, operators, data types, statements, streams,
lambda expressions, and so forth. Starting with Chapter 8 more advanced features are
covered such as: interactions with external data sources: reading writing files, serializing/
deserializing objects, testing and creating an interface. Chapter 12 is dedicated fully to the
publish-subscribe framework introduced in Java 9. Chapter 13 covers the garbage collector.
The book is completed by the java-for-absolute-beginners project. This project is
organized in modules (thus it is a multimodule project) that are linked to each other and
must be managed by Gradle. Gradle is something we developers call a build tool, which
is used to build projects. To build a project means transforming the code into something
that can be executed. I chose to use multimodule projects for the books I write because
it is easier to build them, and common elements can be grouped together, keeping the

'Early Access Program

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

configuration of the project simple and non-repetitive. Also, by having all the sources
organized in one multimodule project, you get the feedback on whether the sources are
working or not as soon as possible, and you can contact the author and ask him or her to
update them.

Conventions

This book uses a number of formatting conventions that should make it easier to read. To
that end, the following conventions are used within the book:

e code or concept names in paragraphs appear as follows:
import java.util.list;
e code listings appear as follows:

public static void main(String[] args) {
System.out.println("Hello there young developer!");

}

o logsin console outputs appear as follows:

01:24:07.809 [main] INFO c.a.Application - Starting Application
01:24:07.814 [main] DEBUG c.a.p.c.Application - Running in debug mode

o ! This symbol appears in front of paragraphs that you should pay
specific attention to.

o Italic font is used for metaphors, jocular terms and technical terms that
the reader should pay special attention to because they are not explained
in the current context, but they are covered in the book. Examples:

“This was mentioned before at the end of Chapter 4 when generics were
introduced.” “The stack memory is used during execution (also referred
to as at runtime)” or “Let’s see how this is being done under the hood”.

¢ Bold font is used for chapter references and important terms.

As for my style of writing, I like to write my books in the same way I have technical
conversations with colleagues and friends: sprinkling jokes, giving production examples,
and making analogies to non-programming situations. Because programming is just
another way to model the real world.

4

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

When Java Was Owned by Sun Microsystems

The first version of Java was released in 1996. Up until that point, there was a small

team named the Green Team that worked on a prototype language named Oak, which
was introduced to the world with a working demo—an interactive handheld home
entertainment controller called the Star7. The star of the animated touch-screen user
interface was a cartoon character named Duke, created by one of the team'’s graphic
artists, Joe Palrang. Over the years, Duke has become the official Java technology mascot,
and every JavaOne conference has its own Duke mascot personality and the most simple
version is depicted in Figure 1-1.

Figure 1-1. The Duke mascot (image source: http://oracle.com)

The Green Team released it to the world via the Internet, because that was the fastest
way to create widespread adoptions. You can imagine that they jumped for joy every
time somebody downloaded it, because it meant people were interested in it. And there
are a few other advantages making software open source, like the fact that contributions
and feedback come from a bigger and diverse number of people from all over the world.
Thus, for Java, this was the best decision, as it shaped the language a lot of developers
are using today. Even after 22 years, Java is still among the top-three most used
programming languages.

https://oracle.com

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

The American company that started all of this was Sun Microsystems, founded in
1982. It guided the computer revolution by selling computers, computer parts, and
software. Among their greatest achievements is the Java programming language. In
Figure 1-2,%> you can see the company logo that was used since Java’s birth year until it
was acquired by Oracle in 2010.

N

microsystems

Figure 1-2. The Sun Microsystems logo (image source: https://en.wikipedia.
org/wiki/Sun_Microsystems)

It is quite difficult to find information about the first version of Java, but dedicated
developers that witnessed the birth of Java—when the web was way smaller and full of
static pages—did create blogs and shared their experience with the world. It was quite
easy for Java to shine with its applets that displayed dynamic content and interacted
with the user. But because the development team thought bigger, Java became much
more than a web programming language. Because in trying to make applets run in any
browser, the team found a solution to a common problem: portability.

Nowadays, developers face a lot of headaches when developing software that
should run on any operating system. And with the mobile revolution, things have
become really tricky. In Figure 1-3, you see an abstract drawing of what is believed to
be the first Java logo.

’The story behind the logo can be read here: https://goodlogo.com/extended.info/sun-
microsystems-logo-2385. You can also read more about Sun Microsystems.

6

https://goodlogo.com/extended.info/sun-microsystems-logo-2385
https://goodlogo.com/extended.info/sun-microsystems-logo-2385
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Sun_Microsystems

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

JAVA

Figure 1-3. The first Java logo, 1996-2003 (image source: http://xahlee.info/)

Java 1.0 was released at the first JavaOne conference—with over 6000 attendees. It

started out as a language named Oalk® that was really similar to C++ and was designed

for handheld devices and set-top boxes. It evolved into the first version of Java, which

provided developers some advantages that C++ did not.

security: In Java, there is no danger of reading bogus data when
accidentally going over the size of an array.

automatic memory management: A Java developer does not have

to check if there is enough memory to allocate for an object and then
deallocate it explicitly; the operations are automatically handled by the
garbage collector. This also means that pointers are not necessary.

simplicity: There are no pointers, unions, templates, structures.
Mostly anything in Java can be declared as a class. Also, confusion
when using multiple inheritance is avoided by modifying the
inheritance model and not allowing multiple class inheritance.

support for multithreaded execution: Java was designed from the
start to support development of multithreaded software.

portability: A Java motto is Write it once, run it everywhere. This is
made possible by the Java virtual machine, which is covered shortly.

*The language was named by James Gosling after the oak tree in front of his house.

http://xahlee.info/

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

All this made Java appealing for developers, and by 1997, when Java 1.1 was released,
there were already approximatively 400,000 Java developers in the world. JavaOne had
10,000 attendees that year. The path to greatness was set. Before going further in our
analysis of each Java version, let’s clarify a few things.

Why Is Java Portable?

I mentioned a few times that Java is portable and that Java programs can run on any
operating system. It is time to explain how this is possible. Let’s start with a simple
drawing, like the one in Figure 1-4.

Java
Program

Linux JVM ' Mac JVM Windows JVM | Solaris JVM

VY Y S

Linux O Mac 05 Windows O o

Figure 1-4. What makes Java portable

Java is what we call a high-level programming language that allows a developer
to write programs that are independent of a particular type of computer. High-level
languages are easier to read, write, and maintain. But their code must be translated by
a compiler or interpreted into machine language (unreadable by humans because is it
made up of numbers) to be executed, because that is the only language that computers
understand.

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

In Figure 1-4, notice that on top of the operating systems, a JVM is needed to execute
a Java program. JVM stands for Java virtual machine, which is an abstract computing
machine that enables a computer to run a Java program. It is a platform-independent
execution environment that converts Java code into machine language and executes it.

So, what is the difference between Java and other high-level languages? Well, other
high-level languages compile source code directly into machine code that is designed
to run on a specific microprocessor architecture or operating system, such as Windows
or UNIX. What JVM does, it that is mimics a Java processor making it possible for a Java
program to be interpreted as a sequence of actions or operating system calls on any
processor regardless of the operating system.

And because the Java compiler was mentioned, we have to get back to Java 1.1,
which was widely used, even as new versions were released. It came with an improved
Abstract Window Toolkit (AWT) graphical API (collections of components used for
building applets), inner classes, database connectivity classes (JDBC model), classes for
remote calls (RMI), a special compiler for Microsoft platforms named JIT,* support for
internationalization, and Unicode. Also, what made it so widely embraced is that shortly
after Java was released, Microsoft licensed it and started creating applications using it.
The feedback helped further development of Java, thus Java 1.1 was supported on all
browsers of the time, which is why it was so widely deployed.

I Alot of terms used in the introduction of the book might seem foreign to you
now, but as you read the book, more information is presented and these words
will start to make more sense. For now, just keep in mind, that every new Java
version, has something more than the previous version, and at that time, every
new component is a novelty.

So, what exactly happens to developer-written Java code until the actual execution?
The process is depicted in Figure 1-5.

“Just In Time

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

¢ B, Example01. java
(Java source file)
Writes public class Exampledl { —
—_ |
Is compiled .
S javac

Developer }

\ Generates

Example01.class
(Java bytecode file)

oo ENENE
" L yeve/ lang Brring) |
Lieve/wtil/List<ljeve/lang/Sering;>;

(Lijava/lang O Ject ;L 1ava/ lang /0
Lievasl Ject))W
iLjavalutil/funoty

Is executed
by

0s En—L " e J

Figure 1-5. From Java code to machine code

In Figure 1-5, you see that Java code is compiled and transformed to bytecode that is
then interpreted and executed by the Java virtual machine on the underlying operating
system. This is what Java is: a compiled and interpreted general-purpose programming
language with a large number of features that make it well suited for the web. And now
that we’ve covered how Java code is executed, let’s go back to some more history.

Sun Microsystem’s Java Versions

The first stable Java version released by Sun Microsystems could be downloaded from the
website as an archive named JDK 1.0.2. JDK is an acronym for Java Development Kit. This is
the software development environment used for developing Java applications and applets.
It includes the Java Runtime Environment (JRE), an interpreter (loader), a compiler, an
archiver, a documentation generator, and other tools needed for Java development. We will
get into this more when I cover how to install the JDK on your computer.

10

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Starting with version 1.2, released in 1998, Java versions were given codenames.®
The Java version 1.2 codename was Playground. It was a massive release and this was
the moment when people started talking about the Java 2 Platform. Starting with this
version, the releases up to J2SE 5.0 were renamed, and J2SE replaced JDK because the
Java platform was now composed of three parts:

e J2SE (Java 2 Platform, Standard Edition), which later became JSE, a
computing platform for the development and deployment of portable
code for desktop and server environments

e J2EE (Java 2 Platform, Enterprise Edition), which later became
JEE, a set of specifications extending Java SE with specifications for
enterprise features such as distributed computing and web services

e J2ME (Java 2 Platform, Micro Edition), which later became JME, a
computing platform for development and deployment of portable
code for embedded and mobile devices

With this release, the JIT compiler became part of Sun Microsystem’s JVM (which
basically means turning code into executable code became a faster operation and the
generated executable code was optimized), the Swing graphical API was introduced as
a fancy alternative to AWT (new components to create fancy desktop applications were
introduced), and the Java collections framework (for working with sets of data) was
introduced.

J2SE 1.3 was released in 2000 with the codename Kestrel (maybe as a reference to
the newly introduced Java sound classes). This release also contained Java XML APIs.

J2SE 1.4 was released in 2002 with the codename Merlin. This is the first year that the
Java Community Process members were involved in deciding which features the release
should contain, and thus, the release was quite consistent. This is the first release of the
Java platform developed under the Java Community Process as JSR 59.° The following
features are among those worth mentioning.

e Support for IPv6 (basically applications that run over a network can
now be written to work using networking protocol IPv6).

All codenames, for intermediary releases too, are listed here: http://www.oracle.com/
technetwork/java/javase/codenames-136090.html#close

°If you want to see the contents and the list of Java Specification Requests, follow this URL:
http://www.jcp.org/en/jsr/detail?id=59

11

http://www.oracle.com/technetwork/java/javase/codenames-136090.html#close
http://www.oracle.com/technetwork/java/javase/codenames-136090.html#close
http://www.jcp.org/en/jsr/detail?id=59

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

o Non-blocking IO (IO is an acronym for input-output, which refers to
reading and writing data— a very slow operation. Making IO non-
blocking means to optimize these operations to increase speed of the

running application.)

o Logging API (Operations that get executed need to be reported to a
file or a resource, which can be read in case of failure to determine
the cause and find a solution. This process is called logging and
apparently only in this version components to support this operation
were introduced.)

o Image processing API (Components developers can use this to
manipulate images with Java code.)

Java’s coffee cup logo made its entrance in 2003 (between releases 1.4 and 5.0) at the
JavaOne conference. You can see it in Figure 1-6.7

‘E—-i) Java

—

Figure 1-6. Java official logo 2003-2006 (image source: http://oracle.com)

J2SE 5.0 was released in 2004 with the codename Tiger. Initially, it followed the
typical versioning, and was named 1.5, but because this was a major release with a
significant number of new features that proved a serious improvement of maturity,
stability, scalability, and security of the J2SE, the version was labeled 5.0 and presented
like that to the public, even if internally 1.5 was still used. For this version and the next
two, it was considered that 1.x = X.0. Let’s list those features because most of them are
covered in the book.

"The Java language was first named Oak. It was renamed to Java because of copyright issues.
There are a few theories that you will find regarding the new name. There is one saying that
the JAVA name is actually a collection of the initials of the names being part of the Green team:
James Gosling, Arthur Van Hoff, and Andy Bechtolsheim, and that the logo is inspired by their
love of coffee.

12

http://oracle.com/

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Generics provide compile-time (static) type safety for collections and
eliminates the need for most type conversions (which means the type
used in a certain context is decided while the application is running,
we have a full section about this in Chapter 5).

Annotations, also known as metadata, are used to tag classes and
methods to allow metadata-aware utilities to process them (which
means a component is labeled as something another component
recognizes and does specific operations with it).

Autoboxing/unboxing are automatic conversion between primitive
types and matching object types (wrappers), also covered in Chapter 5.

Enumerations define static final ordered sets of values using the
enum keyword; covered in Chapter 5.

Varargs are the last parameter of a method is declared using a type
name followed by three dots (String. . .), which implies that any
number of arguments of that type can be provided and is placed into
an array; covered in Chapter 3.

Enhanced for each loop is used to iterate over collections and arrays
too; covered in Chapter 5.

Improved semantics for multithreaded Java programs, covered in
Chapter 7.

Static imports are covered in Chapter 5.

Improvements for RMI (not covered in the book), Swing (Chapter 10),
concurrency utilities (Chapter 7), and introduction to the Scanner
class; covered in Chapter 11.

Java 5 was the first available for Mac OS X (version 10.4) and the default version

installed on Mac OS X (version 10.5). There were a lot of updates?® released for this

version to fix issues related to security and performance. It was a pretty buggy release,

which is understandable since quite a lot of features were developed in only two years.

8Let’s call them what they actually are: hotfixes.

13

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

In 2006, Java SE 6 was released with a little delay, with the codename Mustang. Yes,
yet another rename. And yes, yet again a serious number of features were implemented
in a short period of time and a lot of updates followed. This was the last major Java
release by Sun Microsystems. Oracle acquired the company in January 2010. Let’s take a
look at the most important features in this release:

¢ Dramatic performance improvements for the core platform
(applications run faster, need less memory or CPU to execute)

o Improved web service support (optimized components that are
required for development of web applications)

e JDBC 4.0 (optimized components that are required for development
of applications using databases)

o Java Compiler API (basically, from your code you can components
that are used to compile code)

o Many GUI improvements, such as integration of SwingWorker in
the AP], table sorting and filtering, and true Swing double-buffering
(eliminating the gray-area effect); basically, improvement of
components used to create interfaces for desktop applications

In December 2008, Java FX 1.0 SDK was released. JavaFX is used to create graphical
user interfaces for any platform, and the initial version was a scripting language. Until
2008, there were two ways to create a user interface in Java:

e AWT (Abstract Window Toolkit) components, which are rendered
and controlled by a native peer component specific to the underlying
operating system; that is why AWT components are also called
heavyweight components.

e Swing components, which are called lightweight because they do
not require allocation of native resources in the operating system'’s
windowing toolkit. The Swing API is a complimentary extension
of AWT.

In the first versions, it was never really clear if JavaFX would actually have a future
and grow up to replace Swing. The management turmoil inside Sun did not help in
defining a clear path for the project either.

14

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Oracle Takes Over

Although Sun Microsystems won a lawsuit against Microsoft, in which they agreed to pay
$20 million for not implementing the Java 1.1 standard completely, in 2008, the company
was in such poor shape that negotiations for a merger with IBM and Hewlett-Packard
began. In 2009, Oracle and Sun announced that they agreed on the price: Oracle would
acquire Sun for $9.50 a share in cash; this amounted to a $5.6 billion offer. The impact
was massive. A lot of engineers quit, including James Gosling, the father of Java, which
made a lot of developers question the future of the Java platform.

Java SE 7, codename Dolphin, was the first Java version released by Oracle in
2011. It was the result of an extensive collaboration between Oracle engineers and
members of the worldwide Java communities, like the OpenJDK Community and the
Java Community Process (JCP). It contained a lot of changes, but still, a lot fewer than
developers expected. Considering the long period between the releases, the expectations
were pretty high. Project Lambda, which was supposed to allow usage of lambda
expressions in Java (this leads to considerable syntax simplification in certain cases), and
Jigsaw (making JVM and the Java application modular; there is a section in Chapter 3
about them) were dropped. Both were released in future versions. The following are the
most notable features in Java 7.

e JVM support for dynamic languages with the new invokedynamic
bytecode (basically, Java code can use code implemented in non-Java
languages, such as C)

o Compressed 64-bit pointers (internal optimization of the JVM, so less
memory is consumed)

e Small language changes grouped under project Coin

strings in switch (covered in Chapter 7)

automatic resource management in try-statement (covered in Chapter 5)

improved type inference for generics—the diamond <> operator (covered in
Chapter 5)

binary integer literals (covered in Chapter 5)

multiple exceptions handling improvements (covered in Chapter 5)

o Concurrency improvements

15

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

e Newl/O library (new classes added to read/write data to/from files,
covered in Chapter 8)

o Timsort to sort collections and arrays of objects instead of merge
sort (Sets of data that are ordered need to be sorted using an
algorithm, basically, in this version, the algorithm was replaced with
one that has better performance. Better performance usually means
reducing of consumed resources: memory and/or CPU, or reducing
the time needed for execution.)

It must have been difficult to pick up a project and update it with almost none of the
original development team involved. That can be seen in the 161 updates that followed;
most of them needed to fix security issues and vulnerabilities.

JavaFX 2.0 was released with Java 7. This confirmed that the JavaFX project had a
future with Oracle. As a major change, JavaFX stopped being a scripting language and
became a Java API. This meant that knowledge of the Java language syntax would be
enough to start building user graphical interfaces with it. JavaFX started gaining ground
over Swing because of its hardware-accelerated graphical engine called Prism that did a
better job at rendering.

Java SE 8, codename Spider, was released in 2014, and included features that were
initially intended to be part of Java 7. But, better late than never, right? Three years in the
making, Java 8 contained the following key features.

o Language syntax changes

Language-level support for lambda expressions (functional programming
features)

Support for default methods in interfaces (covered in Chapter 4)

New date and time API (covered in Chapter 5)

New way to do parallel processing by using streams (covered in Chapter 8)

o Improved integration with JavaScript (the Nashorn project).
JavaScript is a web scripting language that is quite loved in the
development community, so providing support for it in Java probably
won Oracle a few new supporters.

o Improvements of the garbage collection process

16

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Starting with Java 8, codenames were dropped to avoid any trademark-law hassles;
instead, a semantic versioning that easily distinguishes major, minor, and security-
update releases was adopted.® The version number matches the following pattern:

$MAJOR . $MINOR.$SECURITY

When executing java -version in a terminal (if you have Java 8 installed), you see
something similar to the following log.

$ java -version

java version "1.8.0 162"

JavaTM SE Runtime Environment build 1.8.0_162-b12

Java HotSpotTM 64-Bit Server VM build 25.162-b12, mixed mode

In this log, the version numbers have the following meaning:

e The 1 represents the major version number, incremented for a major
release that contains significant new features as specified in a new
edition of the Java SE Platform Specification.

o The 8 represents the minor version number, incremented for a minor
update release that may contain compatible bug fixes, revisions to
standard APIs and other small features.

o The 0 represents the security level that is incremented for a security-
update release that contains critical fixes, including those necessary
to improve security. $SECURITY is not reset to zero when $MINOR is
incremented, which lets the users know that this version is a more

secure one.
e 162 is the build number.
e b12represents additional build information.

This versioning style is quite common for Java applications, thus this versioning style
was adopted to align with the general industry practices.

Java SE 9 was released in September 2017. The long-awaited Jigsaw project was
finally here. The Java platform is finally modular.

Java Enhancement Proposal 223: http://openjdk.java.net/jeps/223

17

http://openjdk.java.net/jeps/223

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

I This is a big change for the Java world; it’s not a change in syntax and it’s not
some new feature. It’s a change in the design of the platform. Some experienced
developers | know, who have used Java since its first years have difficulties
adapting. It is supposed to fix some serious problems that Java has been living
with for years (covered in Chapter 3). You are lucky because, as a beginner,

you start from scratch, so you do not need to change the way you develop your
applications.

The following are the most important features, aside the introduction of Java
modules.'?

e The Java Shell tool, an interactive command-line interface for
evaluation declarations, statements, and expressions written in Java
(covered in Chapter 3)

e Quite a few security updates

o Improved try-with-resources: final variables can now be used as
resources (covered in Chapter 5)

o " "isremoved from the set of legal identifier names (covered in
Chapter 4)

e Support for private interface methods (covered in Chapter 5)

« Enhancements for the Garbage-First (G1) garbage collector; this
becomes the default garbage collector (covered in Chapter 13)

o Internally, a new more compact String representation is used

(covered in Chapter 5)

e Concurrency updates (related to parallel execution, mentioned in
Chapter 5)

o Factory methods for collections (covered in Chapter 5)

e Updates of the image processing API optimization of components
used to write code that processes images

19A detailed description of all JDK 9 features can be found here: https://docs.oracle.com/
javase/9/whatsnew/toc.htm#ISNEW-GUID-983469B6-9BB5-48CA-B71D-8D7012B2F3CA

18

https://docs.oracle.com/javase/9/whatsnew/toc.htm#JSNEW-GUID-983469B6-9BB5-48CA-B71D-8D7012B2F3CA
https://docs.oracle.com/javase/9/whatsnew/toc.htm#JSNEW-GUID-983469B6-9BB5-48CA-B71D-8D7012B2F3CA

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

Java 9 followed the same versioning scheme as Java 8, with a small change. The Java
version number contained in the name of the JDK finally became the $MAJOR number in
the version scheme. So, if you have Java 9 installed, when executing java -versionina
terminal, you see something similar to the following log.

$ java -version

java version "9.0.4"

JavaTM SE Runtime Environment build 9.0.4+11

Java HotSpotTM 64-Bit Server VM build 9.0.4+11, mixed mode

Java SE 10 (AKA Java 18.3) was released on March 20, 2018. Oracle changed the Java
release style, so a new version is released every six months. Also, Java 10 uses the new
versioning convention set up by Oracle: the version numbers follow a $YEAR. $MONTH
format.!' Apparently, this release versioning style is supposed to make it easier for
developers or end users to figure out the age of a release so that they can judge whether
to upgrade it to a newer release with the latest security fixes and additional features.

The following are a few features of Java 10."?

e Alocal-variable type inference to enhance the language to extend
type inference to local variables (this is the most expected feature and
is covered in Chapter 5)

« More optimizations for garbage collection (covered in Chapter 13)

o Application Class-Data Sharing to reduce the footprint by sharing
common class metadata across processes (this is an advanced feature
that won’t be covered in the book)

e More concurrency updates (related to parallel execution, mentioned
in Chapter 5)

o Heap allocation on alternative memory devices (The memory
needed by JVM to run a Java program—called heap memory—can be
allocated on an alternative memory device, so the heap can also be
split between volatile and non-volatile RAM. More about memory
used by Java applications can be read in Chapter 5.)

"Java Enhancement Proposal 322: http://openjdk.java.net/jeps/322

2The complete list can be found at http://openjdk.java.net/projects/jdk/10/ and the
release notes containing the detailed list with API and internal changes can be found at http://
www.oracle.com/technetwork/java/javase/10-relnote-issues-4108729.html10-relnote-
issues-4108729.html
19

http://openjdk.java.net/jeps/322
http://openjdk.java.net/projects/jdk/10/
http://www.oracle.com/technetwork/java/javase/10-relnote-issues-4108729.html
http://www.oracle.com/technetwork/java/javase/10-relnote-issues-4108729.html

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

And since we've done this before, let’s see what running java -version in a terminal
shows for this Java version.

$ java -version

java version "10" 2018-03-20

JavaTM SE Runtime Environment 18.3 build 10+46

Java HotSpotTM 64-Bit Server VM 18.3 build 10+46, mixed mode

Java SE 11 (AKA Java 18.9)" (released on 25 September 2018) contains the following
features:

e Removal of JEE advanced components used to build enterprise Java
applications and Corba (really old technology for remote invocation,
allowing your application to communicate with applications installed
on a different computer) modules

o Local-variable syntax for lambda parameters allow the var keyword
to be used when declaring the formal parameters of implicitly typed
lambda expressions

o Epsilon, alow-overhead garbage collector (is a no-GC, so
basically you can run an application without a GC), basically more
optimizations to the garbage collection (covered in Chapter 13)

e More concurrency updates (related to parallel execution, mentioned
in Chapter 5)

Aside from these changes, it was also speculated that a new versioning change
should be introduced because the $YEAR. $MONTH format did not go so well with
developers. (Why so many versioning naming changes, right? Is this really so important?
Apparently, it is.) The proposed versioning change is similar to the one introduced in
Java 9, and if you are curious, you can read a detailed specification for it at
http://openjdk.java.net/jeps/322.

When this chapter was written, JDK 11 was available only via the early access
program, which is why the "ea" string is present in the version name; it means early
access. It is quite difficult to use it, as it is not supported by any editors or other build
tools yet. By the time this book is released, Java 11 will be stable and ready to use and the
sources for the book are updated accordingly on the GitHub repository.

BDetails are at http://openjdk.java.net/projects/jdk/11/

20

http://openjdk.java.net/jeps/322
http://openjdk.java.net/projects/jdk/11/

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

$ java -version

java version "11-ea" 2018-09-18

JavaTM SE Runtime Environment 18.9 build 11-ea+2

Java HotSpotTM 64-Bit Server VM 18.9 build 11-ea+2, mixed mode

And this is where the details end. If you want more information on the first 20 years
of Java’s life, you can find it on Oracle’s website.!*

What the Future Holds

Java has dominated the industry for more than 20 years. It wasn’t always at the top of the
most-used development technologies, but it never left the top five since its existence.
Even with server-side JavaScript smart frameworks, like Node.js, the heavy-lifting is still
left to Java. Emerging programming languages like Scala and Kotlin run on the JVM, so
maybe the Java programming language will suffer a serious metamorphosis in order to
compete, but it will still be here.

The modularization possibility introduced in version 9 opens the gates for Java applications
to be installed on smaller devices, because to run a Java application, we no longer need
the whole runtime—only its core plus the modules the application was built with.

Also, there are a lot of applications written in Java, especially in the financial domain,
so Java will still be here, because of legacy reasons and because migrating these titan
applications to another technology is an impossible mission.

Java will probably survive and be on top for the next 10 to 15 years. It does help that itis
avery mature technology with a huge community built around it. And the fact that is easy to
learn and developer-friendly makes it remain the first choice for most companies. So, you
might conclude at this point that learning Java and buying this book is a good investment.

Prerequisites

Before ending this chapter, it is only fair to tell you that to learn Java, you need to know or
have a few things....

e Your way around an operating system, such as Windows,
Linux or macOS

"The first 20 years of Java’s life: http://oracle.com.edgesuite.net/timeline/java/

21

http://oracle.com.edgesuite.net/timeline/java/

CHAPTER 1 AN INTRODUCTION TO JAVA AND ITS HISTORY

e How to refine your search criteria, because information related to
your operating systems is not covered in the book; if you have issues,
you must fix them yourself

¢ An Internet connection

If you already know Java, and you just bought this book out of curiosity or for the
modules chapter, knowing about a build tool like Maven or Gradle is helpful, because
the source code is organized in a multimodule project that can be fully built with one
simple command. I've chosen to use a build tool because in this day and age, learning
Java without one makes no sense; any company you apply to most definitely uses one.

Aside from the prerequisites that I listed, nothing else is needed. You do not need to
know math, algorithms, or design patterns. Actually, you might end up knowing a few
after you read this book.

This being said, let’s dig in.

22

CHAPTER 2

Preparing Your
Development Environment

To start learning Java, you need a few things installed on your computer. The following
are the requirements:

e Java support on your computer (kinda’ mandatory).

e Anintegrated development environment, also known as IDE, which
is basically an application in which you write your code and that you
use to compile and execute it.

o Therecommended IDE for this book is Intelli] IDEA. You can
go to their website to get the free community edition; for the
purposes of the book, it will do.

¢ Or, you can choose the most popular free IDE for Java
development: Eclipse.

e Or, you can try NetBeans,' which is the default choice for most
beginners because it was bundled with the JDK until version 8.%*

'Get it from here https://netbeans.org/

*See: http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-
jsp-142931.html

For Eclipse and NetbeansNetBeans, you will need to install a plugin for Gradle support.

23

© Iuliana Cosmina 2018
I. Cosmina, Java for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3778-6_2

https://netbeans.org/
http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

e Gradle is a build tool used to organize projects, to easily handle
dependencies, and make your work easier as your projects get bigger.
(It is mandatory because the projects in this book are organized and
built on a Gradle setup.)

o Gitis aversioning system that you can use to get the sources for the
book, and you can experiment with it and create your own version.
It is optional because GitHub, which is where the sources for this
chapter are hosted, supports direct download.*

To write and execute Java programs/applications, you only need the Java
Development Kit installed. All other tools that I've listed here are only needed to make
your job easier and to familiarize you with a real development job.

I You probably need administrative rights if you install these applications for all
users. For Windows 10, you might even need a special application to give your user
administrative rights so you can install the necessary tools. This book provides
instructions on how to install everything—assuming your user has the necessary
rights. If you need more information, the Internet is there to help.

If it seems like a lot, do not get discouraged; this chapter contains instructions on
how to install and verify that each of tool is working accordingly. Let’s start by making
sure your computer supports Java.

Installing Java

Here you are with your computer and you can’t wait to start writing Java applications.
But first, you need to get yourself a JDK and install it. For this, you need an Internet
connection to open https://developer.oracle.com/java.

*Also, I don’t think there is a company that does not use a versioning system these days, so getting
comfortable with Git could be a serious advantage when applying for a software developer
position.

24

https://developer.oracle.com/java

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

Scroll down until you see the Downloads section. Click the Java SE link. The two
links and their contents are depicted in Figure 2-1.

@ @ hitpsyidemeiope: onace.comfva

(-~} +
Downloads
Free software downloads for developers.
4 « «
=’]ava =’ Java =’]ava
JavaEE »

Java SE >

Java Mission Control 3

SEE ALL DOWNLOADS »

@ www.oracle.com/technetwork/j

downic

jsp-138363.html 5]

ORACLE

Q ". Account v @ Coun

Oracle Technology Network (Java | Java SE [Downloads

Java SE

Ovarviaw Dh Ci Training |
Java EE ' -
Java ME Java SE Downloads
Java SE Advanced & Suite
Javas Embecded)
o8 g &R
=’ |Java NetBeans
=" 't
Wt Tier
Java Card
Java TV — e
Mew lo Java Java Plalfor (JOK) 10 NelBeans with JOK 8
Cormmunity Java Platform, Standard Edition
Java Magazine Java SE 10
Java SE 10 is the latest feature release for the Java SE Platferm
Leam maore +
= Instaliation Instructions. JDK

DOWNLOAD #
* Release Noles

= Oracle License

= 3 . Server JRE
* Java SE Licensing Information User Manual
* Includes Third Party Licansas
» Cenified System Configuraticons
i ’ JRE

Figure 2-1. Navigating the Oracle site to find the desired product, JDK in this case

25

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

On the Oracle site, you find the latest stable Java version. Click the Download JDK
button. You should be redirected to the page depicted in Figure 2-2.

@ www.oracle.com/ftechnetwork/javafjavase/downloads/jdk10-downloads-4416644.html

ORACLE E Menu Q ‘.. Account v eCOL

Oracle Technology Network [Java [Java SE / Downloads

Java SE Overview | Downloads | Documentation || Community | Technologies || Training

Java EE ' ' ' ' '

Java ME Java SE Development Kit 10 Downloads

Java SE Advanced & Suite Thank you for downloading this release of the Java™ Platform, Standard Edition Development Kit

Java Embedded (JODK™). The JDK is a development environment for building applications, and components using the
Java programming language.

Java DB

Web Tier The JDK includes tools useful for developing and testing programs written in the Java programming
language and running on the Java platform.

Java Card

Java TV See also:

ava « Java Developer Newsletter: From your Oracle account, select Subscriptions, expand

New to Java Technology, and subscribe to Java.

Community « Java Developer Day hands-on workshops (free) and other events

Java Magazine « Java Magazine

JOK 10 checksum

Java SE Development Kit 10
You must accept the Oracle Binary Code License Agreement for Java SE to download this
software.
Thank you for accepting the Oracle Binary Code License Agreement for Java SE; you may
now download this software.

Product / File Descripti File Size Download
Linux 305.93 MB #jdk-10_linux-x84_bin.rpm
Linux 338.37 MB #®jdk-10_linux-x64_bin.tar.gz
macOS 39542 MB #®jdk-10_osx-x64_bin.dmg
Solaris SPARC 206.77 MB #jdk-10_solaris-sparcv_bin.tar.gz
Windows 390.08 MB #jdk-10_windows-x64_bin.exe

Figure 2-2. The Oracle page where you can download the desired JDK

As you can see, JDK is available for a few operating systems. You should download
the one matching yours. For writing this book and the source code, I used a macOS
computer, which means I download the JDK with the .dmg extension.

You need to accept the license agreement before being allowed to download the
desired JDK. You can read it if you are curious, but basically, it tells you that you are
allowed to use Java as long as you do not modity its original components. It also tells you
that you are responsible for how you use it, so if you use it to write or execute dangerous
applications, you are legally responsible.

26

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

If you want to get your hands on an early version of JDK that is not officially released
yet, go to http://openjdk.java.net/projects/jdk/. Under Releases, versions 10 and
11, an early access (unstable) JDK 11 is available for download.

I This book covers Java specifics until Java 11, but that version was eight
months away when this chapter was written, so some images and details might
seem deprecated. Keep in mind that there are common details that remain the
same from one version to the next, and those won’t be reviewed and changed, as
the only thing that is different is the version number. Since this book was planned
to be released after Java 11 was released, it is recommended to download that
version of the JDK to have full compatibility of the sources.

After you download the JDK, the next step is to install it. Just double-click it and
click Next until finished. This works for Windows and macOS. The JDK is installed in a
specific location.

In Windows, it is C: \ProgramFiles\Java\jdk-10.

In macOS, itis /Library/Java/JavaVirtualMachines/jdk-10. jdk/Contents/Home.

On Linux systems, depending on the distribution, the JDK install location varies. My
preferred way is to get the *.tar.gz from the Oracle site that contains the full content
of the JDK, unpack it, and copy it to a specific location. Also, my preferred location on
Linux is /home/iuliana.cosmina/tools/jdk-10.jdk.

I Using a PPA (repository)® installer on Linux puts the JDK files where they are
supposed to go on Linux automatically and updates them automatically when a
new version is released using the Linux (Global) updater utility. But if you are using
Linux proficiently, you’ve probably figured this out.

If you go to that location, you can inspect the contents of the JDK. In Figure 2-3, the
contents of JDK 10 are on the left; the contents of the JDK 8 are on the right.

°Also known as a Package Manager

27

http://openjdk.java.net/projects/jdk/

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

a4
storage jLibrary/lava/JavaVirtualMachines/jdk-10.jdk/Contents/Hor » storage [Library/lava/lavaVirtualMachinesjdk1.8.0_162.jdk/Contents/Home

E.. NAME ~ SIZE DATE PER...| |E.. NAME ~ SIZE DATE PER...
Q. <DIR> 02/01/18 01:28 PM .. 12/20/17 03:55 AM

bin <DIR> 02/01/18 01:31 PM dr-x bin <DIR> 12/20/17 03:58 AM dr-x

conf <DIR> 02/01/18 01:28 PM dr-x db <DIR> 12/20/17 03:53 AM dr-x

include <DIR> 02/01/18 01:28 PM dr-x include <DIR> 12/20/17 03:53 AM dr-x

jmods <DIR> 02/01/18 01:28 PM dr-x jre <DIR> 12/20/17 03:55 AM dr-x

legal <DIR> 02/01/18 01:28 PM dr-x ik <DIR> 12/20/17 03:55 AM dr-x

lib <DIR> 02/01/18 01:28 PM dr-x man <DIR> 12/20/17 03:53 AM dr-x

@ README.html| 1KB 02/01/18 01:28 PM -r-- COPYRIGHT 3.1KE 12/20/17 03:53 AM -r--

release 1.5 KB 02/01/18 01:28 PM -r-- Javafx-sre.zip 4.9 MB 12/20/17 12:40 AM -r--

LICENSE 1KE 12/20/17 03:53 AM -r--

@ README.html 1KE 12/20/17 03:53 AM -r--

release 1KE 12/20/17 03:53 AM -r--

Sre.zip 20 ME 12/20/17 03:53 AM -r--

o THIRDPARTYLICENSEREADME-JAVAFX. txt 62 KB 12/20/17 12:40 AM -r--

o THIRDPARTYLICENSEREADME.txt 141 KB 12/20/17 03:53 AM -r--

Figure 2-3. JDK version 8 and ten contents comparison

I chose to make this comparison because, starting with Java 9, the content of the
JDK is organized differently. Until Java 8, the JDK contained a directory called jre
that contained a Java Runtime Environment (JRE) used by the JDK. The 1ib directory
contains Java libraries and support files needed by development tools.

The bin contains a set of Java executables for running Java applications.

Starting in Java 9, the JRE was no longer isolated in its own directory. In the
Figure 2-4, you see the contents of the JDK 10 on the left, and the contents of the JRE 10

on the right.®
stofage [Ubrary/lava/JavaVirtualMachines /ydk - 10, jdk /Contents /Home / : wliana cosmina [Users/ilana.cosmina /Downloads /jre - 10 cal
E.. NAME ~ SIZE DATE PER E.. NAME ~ SIZE DATE PERMISSIONS
D .. <DIR> 02/01/18 01:28 PM D . <DR> 02/01/18 01:19 PM
bin <DIR> 02/01/18 01:31 PM dr-x bin <DIR> 02/01/18 01:19 PM drwxr-xr-x
conf <DIR> 02/01/18 01:28 PM dr-x conf <DIR> 02/01/18 01:19 PM drwxr-xr-x
include <DIR> 02/01/18 01.28 PM dr-x legal <DIR> 02/01/18 01.19 PM drwxr-xr-x
jmods <DIR> 02/01/18 01:28 PM dr-x b <DIR> 02/01/18 01:19 PM drwor-xr-x
legal <DIR> 02/01/18 01:28 PM dr-x | |@ README.html 1 KB 02/01/18 01:19 PM ~r==r-=r-=
] <DIR> 02/01/18 01:28 PM dr-x release 1.2 KB 02/01/18 01:19 PM =rw=r==r==
README html 1K8 02/01/18 01:28 PM -r--
release L.SKB 02/01/18 01:28 PM -r--

Figure 2-4. JDK 10 and JRE contents compared

’JDK and JRE 10 have the same directory structure introduced in version 9.

28

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

The directory structure depicted was introduced when Java 9 was released. You can
read more about it on the official Oracle site.”

The most important thing you need to know about the JDK is that the bin directory
contains executables and command-line launchers that are defined by the modules
linked to the image, thus the JDK has a few of those extra compared to the JRE. The other
directories are the jmods directory, which contains the compiled module definitions, and
the include directory, which contains the C-language header files that support native-
code programming with the Java Native Interface (JNI) and the Java Virtual Machine
(JVM) Debug Interface.

The JAVA _HOME Environment Variable

The most important directory in the JDK is the bin directory, because that directory

has to be added to the path of your system so you can call the Java executables

from anywhere. This allows other applications to call them as well, without extra
configurations steps needed. Most IDEs used for handling® Java code are written in Java,
and they require knowing where the JDK is installed so that they can be run. This is done
by declaring an environment variable named JAVA HOME that points to the location of the
JDK directory. To make the Java executables callable from any location within a system,
you must add the bin directory to the system path. The next three sections explain how
to do this on the three most common operating systems.

"The new directory structure introduced with Java 9 is explained in detail at https://
docs.oracle.com/javase/9/install/installed-directory-structure-jdk-and-jre.
htm#JSJIG-GUID-F7178F2F-DC92-47E9-8062-CA6B2612D350

®Includes operations like writing the code, analyzing the code, compiling it, and executing it.

29

https://docs.oracle.com/javase/9/install/installed-directory-structure-jdk-and-jre.htm#JSJIG-GUID-F7178F2F-DC92-47E9-8062-CA6B2612D350
https://docs.oracle.com/javase/9/install/installed-directory-structure-jdk-and-jre.htm#JSJIG-GUID-F7178F2F-DC92-47E9-8062-CA6B2612D350
https://docs.oracle.com/javase/9/install/installed-directory-structure-jdk-and-jre.htm#JSJIG-GUID-F7178F2F-DC92-47E9-8062-CA6B2612D350

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

JAVA_HOME on Windows

To declare the JAVA_HOME environment variable on a Windows system, you need to open
the dialog window for setting up system variables. On Windows systems, click the Start
button; in the menu, there is a search box (or right-click the Start button for a context-
menu and select Search). Enter the word environment in there (the first three letters
should suffice) and the option should become available for clicking. These steps are

depicted in Figure 2-5.

0O €03 Filters \v/

~ Best match
(

L@ Edit the system environment variables
= Control panel

Settings
E4 Edit environment variables for your account

Documents (2+)

env

Figure 2-5. Windows menu item to configure environment variables

30

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

After clicking that menu item, a window like the one shown in Figure 2-6 should
open.

Hardware Advanced System Protection Remote

You must be logged on as an Administrator to make most of these changes.
Performance

Visual effects, processor scheduling, memory usage, and virtual memory

User Profiles
Desktop settings related to your sign-in
Startup and Recovery
System startup, system failure, and debugging information
Environment Variables. ..
0K Cancel Apply

Figure 2-6. First dialog window to set environment variables on Windows

Click the Environment Variables button. Another dialog window opens, which is
split into two sections: user variables and system variables. You are interested in system
variables because that is where we declare JAVA_HOME. Just click the New... button and a
small dialog window appears with two text fields; one requires you to enter the variable
name—-JAVA _HOME in this case, and one requires you to enter the path—to the JDK in
this case. The second window and the variable information pop-up dialog window are
depicted in Figure 2-7.

31

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

User variables for iuliana.grajdeanu

Variable Value

OneDrive C:\Users\iuliana.grajdeanu’\OneDrive

Path %USERPROFILE%:\AppData\Local\Microsoft\WindowsApps;

TEMP %USERPROFILE%:\AppData\Local\Temp

TMP %USERPROFILES:\AppData\Local\Temp
Variable pame: | JAVA_HOME]
Variable value: | CA\Program Files\Java\jdk-10 |

Browse Directory... Browse File... oK Cancel

System variables

Variable Value A
ComSpec CAWINDOWS\system32\cmd.exe

GRADLE_HOME Ci\tools\gradle

JAVA_HOME C:\Program Files\Java\jdk-10

M2_HOME C\tools\maven

NLS_LANG AMERICAN_AMERICA.WEBISO8859P15

NUMBER_OF_PROCESSORS &

os Windows_NT

Path C:\ProgramData\Oracle\Java\javapath;C:\db\product\12.2.0\dbhome_1\bin;C:\WIN...
PATHEXT .COM:.EXE;.BAT;.CMD;.VBES; .VBE;.JS;.JSE;.WSF;.WSH;.MSC

PROCESSOR_ARCHITECTURE AMDS4 v

New... Edit... Delete
oK Cancel

Figure 2-7. Declaring JAVA_HOME as a system variable on Windows

After defining the JAVA_HOME variable, you need to add the executables to the system
path. This can be done by editing the Path variable. Just select it from the System
Variables list and click the Edit... button. Starting in Windows 10, each part of the Path
variable is shown on a different line, so you can add a different line and add %JAVA _
HOME%\bin on it. This syntax is practical because it takes the location of the bin directory
from whatever location the JAVA_HOME variable contains. The dialog window is depicted
in Figure 2-8.

32

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

Useq Edit environment variable %
Va |
ol C:\ProgramData\Oracle\Java\javapath New
B Cdb\product\12.2.00dbhome_1\bin
T: %SystemRoot%\system32 Edit
1 %SystemRoot%
%SystemRoot %\ System32\Wbem Browse...
9%6SYSTEMROOT %\ System32\WindowsPowerShell\w1.0\
FJAVA_HOME%\bin Delete
%M2_HOME%\bin
%GRADLE_HOME3%\bin
Move Up
Move Down ._
Syste Edit text...
Va ad
Cq
Gl
1A
M
N
N [ox][conce
0
Path C:\ProgramData\Oracle\Java\javapath;C:\db\product\12.2.0\dbhome_1\bin; C:\WIN...
PATHEXT .COM;.EXE;.BAT;.CMD;.VBS;.VBE; JS; JSE; WSF;.WSH;.MSC
PROCESSOR_ARCHITECTURE AMD&4 v
New... Edit... Delete
oK Cancel

Figure 2-8. Declaring the JDK executables directory as part of the system Path
variable on Windows 10

On older Windows systems, the contents of the Path variable are depicted in
the dialog box shown in Figure 2-7, so you must add the %JAVA_HOME%\bin text in
the Variable value text field, and separate it from the existing content by using a
semicolon (;).

No matter which Windows system you have, you can check that you set everything
correctly by opening Command Prompt and executing the set command. This lists
all the system variables and their values. JAVA_HOME and Path should be there with the
desired values. For the setup proposed in this section when executing set the output is
depicted in Figure 2-9.

33

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

B Command Prompt - [m] *

C:\Users\iuliana.grajdeanu>set
ALLUSERSPROFILE=C:\ProgramData
APPDATA=C:\Users\iuliana.grajdeanu\AppData\Roaming
CommonProgramfFiles=C:\Program Files\Common Files
CommonProgramFiles(x86)=C:\Program Files (x86)\Common Files
CommonProgramW6432=C:\Program Files\Common Files
COMPUTERNAME=ROSBZ40443248
ComSpec=C: \WINDOWS\system32\cmd.exe
GRADLE_HOME=C:\tools\gradle
HOMEDRIVE=C:

H=\Users\iuliana.grajdeanu
AVA_HOME=C:\Program Files\Java\jdk-10
LOCALAPPDATA=C:\Users\iuliana.grajdeanu\AppData\local
LOGONSERVER=\\ROSBZSRVDC11
M2_HOME=C:\tools\maven
NLS_LANG=AMERICAN_AMERICA.WEB8ISO8B59P15
NUMBER_OF_PROCESSORS=8
OneDrive=C:\Users\iuliana.grajdeanu\OneDrive
0S=Windows NT
E;;hwc:\ProgramData\Ora:le\Java\javapath;c:\db\product\lz.Z.B\dbhome_l\bin;c:\HINDOHS\systemBZ;C:\HINDOHS;C:\HI

S\System32\Wbem;C: \WINDOWS\System32\WindowsPowerShell\v1.0\ C:\Program F \Java\jdk-18\bin;C:\tools\maven\
n;C:\tools\gradle\bin;C:\Users\iuliana.grajdeanu\AppData\Local\Microsoft\WindowsApps;
PATHEXT=.COM; ,EXE; .BAT; .CMD; .VBS; .VBE; . J5; . JSE; .WSF; .WSH; .MSC
PROCESSOR_ARCHITECTURE=AMDG4
PROCESSOR_IDENTIFIER=Intel64 Family 6 Model 94 Stepping 3, Genuinelntel
PROCESSOR_LEVEL=6
PROCESSOR_REVISION=5e@3
ProgramData=C:\ProgramData
ProgramFiles=C:\Program Files
ProgramFiles(x86)=C:\Program Files (x86)
ProgramW6432=C:\Program Files
PROMPT=§P3G
PSModulePath=C:\Program Files\WindowsPowerShell\Modules;C:\WINDOWS\system32\WindowsPowerShell\vl.@\Modules
PUBLIC=C:\Users\Public
SESSIONNAME=Console
SystemDrive=C:
SystemRoot=C: \WINDOWS
TEMP=C:\Users\IULIAN~1.GRA\AppData\Local\Temp
TMP=C:\Users\IULIAN~1.GRA\AppData\Local\Temp
UATDATA=C: \WINDOWS\CCM\UATData\D9F8C395-CAB8-491d-BBAC-179A1FE1BET7
USERDNSDOMAIN=NET . WORK
USERDOMAIN=WORK
USERDOMAIN_ROAMINGPROFILE=WORK
USERNAME=iuliana.grajdeanu
USERPROFILE=C:\Users\iuliana.grajdeanu
windir=C: \WINDOWS

C:\Users\iuliana.grajdeanu>

Figure 2-9. Windows system variables listed with the set command

If you execute the previous command and see the expected output and then execute
java -versionin the command prompt, it prints the expected result. You are all set.

...> Jjava -version
java version "10-ea" 2018-03-20

Java(TM) SE Runtime Environment 18.3 (build 10-ea+42)
Java HotSpot(TM) 64-Bit Server VM 18.3 (build 10-ea+42, mixed mode)

34

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

JAVA_ HOME on macO0S

The location in which JDK is installed is /Library/Java/JavaVirtualMachines/jdk-
10.jdk/Contents/Home. Your JAVA_HOME should point to this location. To do this for the
current user, you can do the following:

1. Inthe /Users/your.user directory, create a file named
.bash_profile.

2. In this file, write the following:
export JAVA HOME=$(/usr/libexec/java_home -v10)
export PATH=$JAVA HOME/bin:$PATH

On macOS§, you can simultaneously install multiple Java versions. You can set which
version is the one currently used on the system by obtaining the JDK location for the
desired version by calling the /usr/libexec/java_home command and giving the Java
version you are interested in as the argument. The result of executing the command is
stored as a value for the JAVA_HOME variable.

On my system, I have JDK 8, 9, 10, and 11 installed. If I execute the command, giving
an argument to each of the Java versions, look at what happens:

$ /usr/libexec/java_home -vi1
/Library/Java/JavaVirtualMachines/jdk-11.jdk/Contents/Home

$ /usr/libexec/java_home -v10
/Library/Java/JavaVirtualMachines/jdk-10.jdk/Contents/Home

$ /usr/libexec/java_home -v9
/Library/Java/JavaVirtualMachines/jdk-9.0.4.jdk/Contents/Home

$ /usr/libexec/java_home -v1.8
/Library/Java/JavaVirtualMachines/jdk1.8.0_162.jdk/Contents/Home

Depending of the version given as argument, a different JDK location is returned. If
you want to test the value of the JAVA_HOME, the echo command can help with that.

$ echo $JAVA HOME
/Library/Java/JavaVirtualMachines/jdk-10.jdk/Contents/Home

35

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

The line export PATH=$JAVA HOME/bin:$PATH adds the contents of the bin directory
from the JDK location to the system patch. This means that I could open a terminal and
execute any of the Java executables under it. For example, I could verify that the Java
version set as default for my user is the expected one by executing java -version.

$ java -version
java version "10-ea" 2018-03-20

Java(TM) SE Runtime Environment 18.3 (build 10-ea+42)
Java HotSpot(TM) 64-Bit Server VM 18.3 (build 10-ea+42, mixed mode)

If you do all of this and java -version prints the expected result, you are all set.

JAVA_HOME on Linux

! If you are using Linux proficiently, you probably are using a PPA, so you can
skip this section. But if you like to control where the JDK is and define your own
environment variables, keep reading.

Linux systems are Unix-like operating systems. This is similar to macOS, which is
based on Unix. Depending on your Linux distribution, installing Java can be done via the
specific package manager or by directly downloading the JDK as a *. tar.gz archive from
the official Oracle site.

If Java is installed using a package manager, the necessary executables are usually
automatically placed in the system path at installation time. That is why in this book, we
cover only the cases where you do everything manually, and choose to install Java only
for the current user in a location such as /home/your.user/tools/jdk-10.jdk,® because
covering package managers is not the object of the book after all.*

9Replaces your.user with your actual system username

9Linux users do not really need this section anyway.©

36

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

So, after downloading the JDK archive from the Oracle site and unpacking it at
/home/your.user/tools/jdk-10. jdk, you need to create a file named either .bashrc or
.bash_profile' in your user home directory and add the following to it.

export JAVA HOME=/home/your.user/tools/jdk-10.jdk
export PATH=$JAVA HOME/bin:$PATH

Asyou can see, the syntax is similar to macOS. To check the location of the JDK and

the Java version, same commands mentioned in the macOS section can be used.

Installing Gradle

M¥radle Gradle 5.x ** The sources attached to this book can be compiled and executed
using the Gradle wrapper, which is a batch script on Windows and a shell script for other
operating systems. When you start a Gradle build via the wrapper, Gradle automatically
downloads and runs the build; thus you do not to really need to install Gradle.
Instructions on how to do this can be found by reading the public documentation at
www.gradle.org/docs/current/userguide/gradle_wrapper.html.

A good practice is to keep code and build tools separate, and for the project attached
to this book this is the recommended way to go.

If you decide to use Gradle outside the editor, you can download the binaries only
(or if you are curious, you can download the full package, which contains binaries,
sources, and documentation) from the official site (www.gradle.org), unpack them, and
copy the contents somewhere on the hard drive. Create a GRADLE_HOME environment
variable and point it to the location where you have unpacked Gradle. Also, add
%GRADLE_HOME%\bin for Windows, or $GRADLE_HOME/bin for Unix-based operating
systems, to the general path of the system.

Gradle was chosen as a build tool for the sources of this book because of the easy
setup, small configuration files, flexibility in defining execution tasks, and because it is
practical to learn a build tool—because for medium-sized and large projects, they are a
must-have.

"0On some Linux distributions, the file might already exist, you just need to edit it.

37

http://www.gradle.org/docs/current/userguide/gradle_wrapper.html
http://www.gradle.org

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

I Verify that the version of Gradle the operating system sees is the one you just
installed by opening a terminal (Command Prompt in Windows, and any type of
terminal you have installed on macOS and Linux) and entering

gradle -version

You should see something similar to this:

Build time: 2018-08-26 23:59:23 UTC

Revision: c2edb259761ee18f9a14e271f24ef58530b1300f

Kotlin DSL: 1.0-rc-3

Kotlin: 1.2.60

Groovy: 2.4.15

Ant: Apache Ant (TM) version 1.9.11 compiled on March 23 2018
JuM: 10 (Oracle Corporation 10+46)

0S: -- whatever operating system you have --

The preceding text is confirmation that Gradle commands can be executed in your
terminal; thus, Gradle was installed successfully.

Installing Git

This is an optional section, but as a developer, being familiar with a versioning system
is important, so here it is. To install Git on your system, just go to the official page at
https://git-scm.com/downloads and download the installer. Open the installer and
click Next until done. This works for Windows and macOS.*? Yes, it is this easy. You do
not need to do anything else.” For Linux, you can use your package manager or PPA to
install Git.

2For macOS, you can use homebrew as well.

BJust in case, here is a page with instructions on how to install Git for all operating systems:
https://gist.github.com/derhuerst/1b15ff4652a867391103

38

https://git-scm.com/downloads
https://gist.github.com/derhuerst/1b15ff4652a867391f03

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

To test that Git installed successfully on your system, open a terminal (Command
Prompt in Windows, and any type of terminal you have installed on macOS and Linux)
andrun git --version to see the result that it is printed. It should be the version of Git
that you just installed.

$ git -version
git version 2.15.1

Now that you have Git installed, you can get the sources for this book by cloning the
official Git repository in a terminal or directly from the IDE. But more about this a little
bit later.

Installing a Java IDE

The editor that I recommend, based on my experience of more than ten years, is IntelliJ
IDEA. It is produced by a company called JetBrains. You can download this IDE from
their official site at www. jetbrains.com. There is an Ultimate Edition available that
you can use for free for 30 days; after that, you need to acquire a license. That is why I
recommend you download and use the Community Edition,'* because for the simple
development involved in learning Java, this version suffices.

After you download the Intelli] IDEA archive, double-click it to install it. After that,
start it to do a couple of configurations. Just click the Next button until you get to the
plugin selection step, which should be very similar to the one depicted in Figure 2-10.

"The Intelli] IDEA download page is at https://www. jetbrains.com/idea/download/

39

http://www.jetbrains.com
https://www.jetbrains.com/idea/download/

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

Ul Themes — Keymaps — Launcher Script — Default plugins — Featured plugins

Tune IDEA to your tasks

IDEA has a lot of tools enabled by default. You can set only ones you need or leave them all.

) 1Y Wil

Build Tools Version Controls Test Tools
Ant, Maven, Gradle CVS, Git, GitHub, Mercurial, JUnit, TestNG-J, Coverage
Subversion
Customize... Disable All Customize... Disable All Customize... Disable All
[{?&1
i ' %
Swing Android Other Tools
Ul Designer Android Bytecode Viewer, Eclipse, Java
Stream Debugger...
Disable Disable Customize... Disable All
4
&'
—
Plugin Development
Plugin DevKit
Disable
Skip Remaining and Set Defaults Back to Launcher Script Next: Featured plugins

Figure 2-10. Intelli] IDEA Community Edition configure plugins dialog section

In the previous image, two sections were underlined. The first section configures
build tools. If you click Customize... button, the window should change to show you the
plugins that are available for build tools. Make sure that the option for Gradle is checked,
as depicted in Figure 2-11, then click the Save Changes and Go Back button.

40

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

(2] @ Customize IntelliJ IDEA

Ul Themes —+ Keymaps — Launcher Script —+ Default plugins — Featured plugins

Tune IDEA to your tasks

IDEA has a lot of tools enabled by default. You can set only ones you need or leave them all.

Build Tools
Ant Maven Gradle
Save Changes and Go Back Enable All Disable All

Figure 2-11. Intelli] IDEA Community Edition configure Gradle plugin

The second section configures support for versioning control systems. If you click
the Customize... button, the window should show you which plugins are available
for versioning systems. Make sure that the options for Git and GitHub are checked, as
depicted in Figure 2-12, and then click the Save Changes and Go Back button. If you go
another step forward, you get to another plugin screen that offers you the possibility to
install a plugin called IDE Feature Trainer. I think if you are a beginner, a plugin might
be very useful. The window is depicted in Figure 2-13

@ 0 Customize IntelliJ IDEA

Ul Themes — Keymaps — Launcher Script — Default plugins —+ Featured plugins

Tune IDEA to your tasks

IDEA has a lot of tools enabled by default. You can set only ones you need or leave them all.

Version Controls

Cvs Git GitHub
Mercurial Subversion
Save Changes and Go Back Enable All Disable All

Figure 2-12. Intelli] IDEA Community Edition configure Git plugin

For the final step, click the Install button, and then Start using IntelliJ IDEA, and
you are all set up and good to go. Your development environment is fully configured and
ready for you to write your first Java program.

41

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

[RSN Customize IntelliJ IDEA

Ul Themes — Keymaps — Launcher Script = Default plugins — Featured plugins

Download featured plugins

We have a few plugins in our repository that most users like to download. Perhaps, you need them too?

Scala IdeaVim IDE Features Trainer

Custom Languages Editor Code tools

Plugin for Scala language support Emulates Vim editor Learn basic shortcuts and essential
IDE features with quick interactive
exercises

Recommended only if you are
% familiar with Vim.

Install Install and Enable Install

New plugins can also be downloaded in Preferences | Plugins

Skip Remaining and Set Defaults Back to Default plugins “Start using IntelliJ IDEA"

Figure 2-13. Intelli] IDEA Community Edition configure IDE Feature Trainer
plugin

But before doing that, let’s also cover how to retrieve the sources for the book.
There are three ways to get the sources for the book:
o Download the zipped package directly from GitHub.

e Clone the repository using a terminal (or Git Bash Shell in Windows)
using the following command:

git clone git@github.com:Apress/java-for-absolute-
beginners.git

e Clone the project using Intelli] IDEA. For this and cloning from
the command line, you need a GitHub user. The following images
show all the dialog windows that you see when cloning the project
with Intelli] IDEA. Figure 2-14 shows the window that you see after

42

CHAPTER 2 PREPARING YOUR DEVELOPMENT ENVIRONMENT

you start an Intelli] IDEA instance that was never used. The project
is hosted on GitHub, so from the Check out from Version Control
menu, select GitHub. At this point, you to the next dialog window,
depicted in Figure 2-15.

| X Welcome to IntelliJ IDEA

IntelliJ IDEA

¢ Create New Project
¥ Import Project
Open

¥ Check out from Version Control «

Git
¥ Configure ~ Get Help ~

Figure 2-14. Intelli] IDEA first dialog window to clone the java-for-absolute-
beginners project

| NN Login to GitHub
Host: github.com Auth Type: Password
Login: iuliana

Password: oo-..o.c.col

Do not have an account at github.com? Sign up

? Save credentials Cancel

Figure 2-15. Intelli] IDEA second dialog window to clone the java-for-absolute-
beginners project

43

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: An Introduction to Java and Its History
	Who This Book Is For
	How This Book Is Structured
	Conventions
	When Java Was Owned by Sun Microsystems
	Why Is Java Portable?
	Sun Microsystem’s Java Versions

	Oracle Takes Over
	What the Future Holds
	Prerequisites

	Chapter 2: Preparing Your Development Environment
	Installing Java
	The JAVA_HOME Environment Variable
	JAVA_HOME on Windows
	JAVA_HOME on macOS
	JAVA_HOME on Linux

	Installing Gradle
	Installing Git
	Installing a Java IDE

