Learn to
Program with
Python 3

A Step-by-Step Guide to Programming
Second Edition
Irv Kalb

Apress’

Learn to Program
with Python 3

A Step-by-Step Guide
to Programming

Second Edition

Irv Kalb

Apress’

Learn to Program with Python 3

Irv Kalb
Mountain View, California, USA

ISBN-13 (pbk): 978-1-4842-3878-3 ISBN-13 (electronic): 978-1-4842-3879-0
https://doi.org/10.1007/978-1-4842-3879-0

Library of Congress Control Number: 2018954633

Copyright © 2018 by Irv Kalb

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green

Development Editor: James Markham

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484238783. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3879-0

This book is dedicated to the memory of my mother, Lorraine Kalb.

I started learning about programming when I was 16 years old,
at Columbia High School in Maplewood, New Jersey.
We were extremely fortunate to have a very early computer,
an IBM 1130, that students could use.

I remember learning the basics of the Fortran programming language
and writing a simple program that would add two numbers together
and print the result. I was thrilled when I finally got my program to
work correctly. It was a rewarding feeling to be able to get this huge,
complicated machine to do exactly what I wanted it to do.

I clearly remember explaining to my mother that I wrote this
program that got the computer to add 9 and 5 and come up with an
answer of 14. She said that she didn’t need a computer to do that.
I tried to explain to her that getting the answer of 14 was not the
important part. What was important was that I had written a
program that would add any two numbers and print the result. She
still didn’t get it, but she was happy for me and very supportive.

Hopefully, through my explanations in this book, you will get it.

Table of Contents

About the AULROKccvimriemmsnmsesmsenss s sann s n e nnnnnns Xiii
About the Technical REVIEWETccuserssassssnsssanssssssssnsssasssssssssnsssassssassssnsssassssasssansss XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
Chapter 1: Getting Started.........ccccusmmmmsnmmmsssnnmmssnnmssssnmssssnmsssssmssssssssssssssssnssssnnssssnnssss 1
WRAL IS PYTNON? ...ttt sp e e s pe e e e nne s 2
INSTAIlING PYINON ... e e e e e 2
IDLE and the Python Shell.........co st ss e 3

L e 0] o TR 4
Creating, Saving, and Running @ PYython File............ccoveornennenercsc s 6
IDLE on Multiple PlatfOrms.........ccccviiirininini st se s s s sss s ssesssses e sne s 8
1] 04 O RSRS 9
Chapter 2: Variables and Assignment Statementsccccccmnnneennmnnsesnmnsssnn. 11
A Sample PYthon Programcccccveeveveninienenssessesessesessessessesssssssessesssssssessessssssssssessesssssssessens 12
The Building Blocks 0f Programming.........cccccvcirrenninsnenennssessesnessssssessessessssessessesssssssessessens 14
FOUr TYPes OF DALAccccvveririciinsre e s p s e s e 15
1T -] £ OSSPSR 15
o U 15
STINGS 1ttt nan 16

3 T00] 72 T T 16
EXamples 0f Data..........ccoviiicinsrn e s 17

Form with Underlying Data...........ccooorvriene e rer e rer e s s s e e n 18

L1 LT 0] S 19
Assignment STAtEMENTS.........cccovcirir s ————————— 24

TABLE OF CONTENTS

Variable NAMES ... s e e e e e ae e 27
Naming CONVENTIONccccoiiiiiirerr e s 28
LG 0] 0 C OOOSSRSS 29
CaSE SENSIIVILYcoveueereecrirc e ee e 31
More Complicated Assignment Statements ... 32

Print STAtEMENES ... s 33

SIMPIE MALN ... ——————————— 35

Order 0f OPEIAtiIONS.......cccereririr i e s e e R s 38

First Python Programs ... s s ses s sasssssessessesssssssessesssssssenaesaes 39

Shorthand Naming CONVENTIONccvcevverernrersiriere s ses s s sae s e ssesessessesaessesessesneees 4

AdAING COMMENTS......civiitererererrerersere s s s s ssesese s saese s e ssessesessessessessssessesaesaesessessessessssensessens 43
FUII-LiNg COMMENTcovieieccccriri e 43
Add a Comment After @ Line 0f COUE..........cccoererrrriemserirsseesese s 44
MUItiling COMMENTcccovieieicecre s 44

WRITESPACEeciveieie i s s e e e e e b e b e e b e e e e e aenne s 45

(0] £ 46
03 L1 t2 V. = (0] TP 46
o CeTs] (0] (8 = (0] OSSR SS 48
0T T o] SRS 49

SUIMIMAIY....eieeetecrere s s Re e e e e e e e Re e s e se e e e e Re e s e e nensn e nrnnnes 49

Chapter 3: Built-in FUNCLioNS.........ccccmminsmmmmmnssssnmmnsssssnmmsssssssmmsssssssssssssssssssssssnnsnss 51

Overview of Built-in FUNCHIONS.........ccovvriinsr s 51

LT (0] L PR 52

AFQUIMIBNTS. ..ot s e e R b e e e e e R e b e e e e Re e R e e s e e ReeRenp e e naennens 52

RESUILS ... e e e R e e e e e e e Re e e e e 53

BUilt=in type FUNCHION......c.oceeeceeree s 53

Getting INput from the USEr.......ceciciresrcsrre e 55

CoNVErsion FUNCHONS.........cccocvniiniisr s 56
INE FUNCHION. ...t 57
Flo@t FUNCTION......ecccericc s 57
ST FUNCHION ... 57

TABLE OF CONTENTS

First Ral PrOgramsccciiiiiinincne s ss e s s st s st st s s 58
(0 1 o720 OSSR 61
Another Programming EXEICISEcccvrurereriesmrrenerensesssesesssssssssessssssessssesessesssssssssssssessssssssssssnnes 62
Using Function Calls Inside Assignment Statements..........cccccovvcrincnncsncsensse s 63
11114 R 65
Chapter 4: User-Defined FUNCLIONSccuiviiiimmmsssssssmmmsssssssssssssssssssssssssssssssssssssnsnns 67
A Recipe as an Analogy for Building SOftWare.........cccvvvrrriererensenseressssessesessesessessessessssessessens 68
10T 1T 1T 68
D=0 0] 3N 68
Definition 0f @ FUNCHON.........cccoieeece e 71
Building Our FirSt FUNCHONccooueceeeeeeer e 72
Calling a User-Defined FUNCLION..........covcrvereresere e sese s e se e sessssessnnens 73
Receiving Data in a User-Defined Function: Parameterscoccvvvvnennissnsesnnesssssessnsennnns 76
Building User-Defined Functions with Parameterscccevvevvvnvniennnensnsense s sesseseseesessensennes 78
Building a Simple Function That Does Additioncccevvverierninienienenesserseseses e seesessessesees 81
Building a Function to Calculate an AVEIage.........ccueereveererrerersesenseserssssssessessesssssssessessessssensesaes 81
Returning a Value from a Function: The return Statement.............cccevvrinininninsncncsncenenn, 82
Returning NO ValUE: NONE ... s 84
Returning More Than One VaIUE...........ccoveeerenernesenenessse s sn s ss s sesenns 85
Specific and General Variable Names in Calls and FUNClions..........ccccovvnvnininvnsncenenccensennens 86
Temperature Conversion FUNCHIONSccoccvevirinienienn e sesesessssessessessessssessessesssssssessessens 88
Placement of Functions in @ Python File..........cccivriininninsn v sesses e 89
Never Write Multiple Copies of the Same COodecccvvcvrrerrecrnsrrc e 90
{0 3 72 TSR 1
£ 010 0PRSS 93
Global Variables and Local Variables with the Same Namesccocvevvvrnnnnnesnnssennsesenenens 97
Finding Errors in FUNCLiONS: TrACEDACKccceereriereririrsire et ne e s 98
£ 11134 7R 101

vii

TABLE OF CONTENTS

Chapter 5: if, else, and elif Statements.........ccccmrrnnnnnn————— 103
FIOWCRAITING ... 104
The if STALEMENTcoeeeeeeeeee e e nne e 107
ComPAriSON OPEFALOLSccueviiiiriirere s e b e e s e b e e nns 109
Examples of if StatemMENtS ... 109
Nested if Statement ... ————— 111
The €lSe STAtEMENT ..o s 111
Using if/else INSide @ FUNCLION........cccvvvrerrerereeserrese s e ssesse s sessessessessssessessessssessessessessssensesaens 114
The elif STAtEMENT........ceeeeeeeee e 115
Using Many elif Statements ..o e 118
A Grading PrOgram.......cccuoceerenernsessnesesesesssse s sssssss s ssssssssssssssssssessssssssssssasssssssssssssssssssssanes 120
A Small Sample Program: ADSOIULE VAIUE..........cccrerereiernserinesene e ssanes 120
Programming ChalleNgES.........ceveerierererrerieressesersessessesessessessesessessessessssessessessssssessessesssssssessens 123

Negative, POSITIVE, ZEF0cccvceriererirsereresirsesese e ses s sae e e s sse s s e ssesaesseses e saesasssssessesnes 123
RS0 1 O 125
ISEVEIN ...ttt 128
1Y 1T 11 0] RS 130
{001 101y 10 I R 132
The LogiCal NOt OPEIALOL.......ccevererrererrereressesessersessessesessessessesesessesaessssessesaesaesssnessessesssssnsesseses 132
The Logical and OPErator ... s sre s se s s sns s s 133
The LogiCal OF OPEIAtOr.........coveeeereerreerreesessesesseesesese s ses e s e se e ses e e ssssesssnesessssssenees 135
Precedence of Comparison and Logical Operators...........cccvevrvnneniennsinsessesssessessesessssessessens 136
Booleans in if StAtEMENTScccveeric s —————— 136
Program to Calculate ShipPiNgccccvivvrrrieriennnrre s s ssessssessesnens 137
£ 1§14 7R 141

Chapter 6: LOOPS....cuuuuusummmmmssssnnnmsssssssnmsssssnsnsssssssnnsssssnnnnsssssnnnnsssssnnnnsssssnnnssssssnnnnss 143
User’s View Of the GAMEcoveemrenernsesnesese s s sesss s 144
LOODS ettt e eR e R e e e e R e Re e e nE e eReeRe e e e renrenRenaran 145
The while Statement ... ———————————— 147
First Loop in @ Real PrOgram.........coccuveririiniinninissinsee e ssessessse s sessessse s ssessssssessessesssssnesaenannns 150

viil

TABLE OF CONTENTS

Increment and DECIEMENT ..o e 151
Running a Program MUItipIe TIMES.......cccucvrererenerr s s 152
Python’s BUilt=in PACKAGESceeererrererinerisesesese s s sessess s sesssssssssessssssessssenns 154
Generating @ RaNdom NUMDENccoiininerncnrne e s 155
Simulation of Flipping @ COiNcccccveviririerierin e sessese e ses s e se e s ssssesesaessesessesaesnes 157
Other Examples of Using Random NUMDEISccvevierrrrierenessensesessesessesessessssessessessessssessesses 158
Creating an INfiNite LOOPcccueirirernic sttt s st 160
A New Style of Building a Loop: while True, and break............ccoveviinvnienennsnsnienesensensennens 160
Asking If the User Wants to Repeat: the Empty String ..o 163
PSEUAOCOUE........ccceeeereererereseseeses e se s s s se s e s e r e e s s e e e e e naenne e e e nnnnnnns 164
Building the Guess the NUMDEr Program..........cccucvernnnnenieninnissessesesssssssessessssessessessessssessesaens 164
Playing @ Game MUHIPIE TIMESccucevererrerrerereeseresessssessessessesessessessesssssssessesssssssessessesssssssesaens 171
Error Detection With try/EXCEPT.....cocvevrrrererrr s re e saesre e e e naenaens 173
The continue StatBMENT...........ccoreeee e e 175
L] T 1 176
Building Error-Checking Utility FUNCLIONSccccooricenncsircse e 178
COdiNG CRAIIBNGEccveereeireir e np e 179
£ 11134 R 181
Chapter 7: ListS.....ccciuunmmmmmmmsnnnnmmssssnnnmsssssssnmssssssssssssssnsssssssssnsssssssnnnssssssnnnssssnnnnnss 183
(LT L0 R0 D L T 184
I £ T 185
=12 1= 0 (ST SSS 185
Python Syntax for @ LiSt.......c.oucvverrinernesnesnssse e s sesse s 186
110§) OO 187
Position of an Element in @ LiSt: INAEX ..o 187
Accessing an Element in @ List ... ssennens 189
Using a Variable or Expression as an Index in @ LiSt.........ccccoovvvninininsnnnnnnsnnssesessssensennens 190
Changing @aValue in @ LISt ... 192
Using Negative INAICES........ccoverrenmrisernsesnnesese s s sn s s s 192
Building a Simple Mad LiDS GAMEccccvvererniirierere s sessesessssessesessssessessessesesssssesaens 193

TABLE OF CONTENTS

Adding a List to Our Mad LibS GAME..........cccvvrierienninrne s ss s snens 195
Determining the Number of Elements in a List: The len Function............coccccvvenrieneniescrnccnens 196
Programming ChallENge 1ccveererernerineserese s s nns 198
Using a List Argument with @ FUNCHION ..o 200
Accessing All Elements of @ List: Rerationcocvvcvvnivnnnsncn s sessessensens 203
for Statements and TOr LOOPS ...c.covverrerieriennsensere s sesessesssssssessessessssessessesssssssessessesssssssessees 204
Programming ChallENQe 2cccueeriirnierine st ses e s 206
Generating @ Range of NUMDEIS ... e 207
Programming ChallENge 3 ... s nns 208
Scientific SIMUIALIONScccvecierr e ————————— 209
List MAnipUITIONcc.cviieiierernsire e s s a e s s s ae s p s na 214
List Manipulation Example: an Inventory EXample.........cccveerrevrnnreniessnensessesesessessesessssessessens 216
Pizza Toppings EXAMPIE.......ccco it rer e s s se e s se s sa e s s e e e s ae s naeans 217
SUMIMANY ..ttt e e e e R e e e e e R e e e e e e R e R e e e e e Re e Re R e b e e e Re e R e e e e naenrin 223
Chapter 8: StringS....cccuumsssmemmmmmmmmssssssssnssnnsessssssssssssssnssssssssssssssnnnnsssssssssssnnnnnnnnsness 225
len Function Applied t0 STriNGS ..o 226
Indexing Characters in @ SINg........covcvniennenis s 226
Accessing Characters in @ SIHNQccveviininere e snens 227
Iterating Through Characters in @ StriNg........cocvcvvrierernrniere s ssessssessesnens 228
Creating @ SubString: A SHCE........covrrrecrr e 230
Programming Challenge 1: Creating @ SHCeccoverreermrenerescrrcre e 232
Additional SHCING SYNTAXccveceriierrrererese s s nrs e nrnns 235
Slicing as Applied 10 @ LiSt.......cccvrinnininin s 236
Strings Are NOot Changeableccccveverrrieriere s re e s sae s e snes 236
Programming Challenge 2: Searching @ String......c.ccoevvrrrrerienessenseriessssessessessessssessessessssessessens 237
Built-in String OPErationsccveviererrrerierierssersesesssssssesesessssessessesssssssessesssssssessessesssssssesaens 238
Examples of String Operations.........cccocvininninnnie s s sessesnens 240
Programming Challenge 3: DireCtory Stylec.coveernerereserrse s 241
310111 T o SRS 243

TABLE OF CONTENTS

Chapter 9: File Input/Output...........ccccviiiemmmmnnnsnnmmmmssssnmmssssmsssssssssssnnm 245
Saving Files 0n @ COMPULETccccererrerircscrr e se s e se e e 246
Defining @ Path 10 @ File ...t 247
Reading from and Writing t0 @ Fileocvrerrerrecrneere e 249
File HANGIEcveeeccerreeree e e ne s 250
The Python 08 PACKaAQE........ccucvveriiiiriie it s s s 251
Building Reusable File 1/0 FUNCLIONSccccvievrrrerreneresensesesesessessessessssessessesssssssessessesssssssessens 252
Example Using Our File 1/0 FUNCLIONSccveviererrereresessereresessessessessssessessesssssssessessesssssssessens 254
Importing Our OWN MOAUIESccceeiiiiirrer s ene 255
Saving Data to a File and Reading It BacKccccvoererencrnscnenenenesc e 257
Building an Adding GAME.........ccccveemrrenernsmsesesesese s s sesssse s s sessssenns 260
Programming ChallENge 1ccueeriirnerinesessse s s ss s s sessesenns 260
Programming ChalleNge 2ccecvcerenerrerierenissirsesessssessessessesessessessessssessessesssssssessessesssssssesnens 261
Writing/Reading One Piece of Data to and from a File........cccocvvvirernrnsenennsessene s sessessensens 263
Writing/Reading Multiple Pieces of Data to and from @ Fileccoccovvcrnccnncccnisccvnceneneens 266
The jOiN FUNGLIONcceiee st e s e e 266
The SPIIt FUNCHIONcieiecircr e e s e e e 267
Final Version of the Adding GAMEcccuerrrermrinmnnsesnessse s se s sessesenns 268
Writing and Reading a Line at a Time with @ File.........ccccvvvvininininnsnene s 271
Example: MUltiple ChOICE TESTccvereererrerererieseresesresessessessesessessessessssessessessssessessessesssssssesaens 275
A Compiled Version of @ MOAUIEccccveveieririerierinserseresesesseressessssessessessessssessessessessssessessens 281
SUMIMANY ..ttt s R e e e e R e e e e e e e Re e R e e e e e Re e Re R e e e e e Re R e e e e e Renns 282

Chapter 10: Internet Dataccccunemmmmnisnmmmmnnsssnmmmssssnssss s ———— 283
Request/ReSponse MOUEccucvrenininienesn e sre e s st snens 283
(e T TR TS (0103 o (- O 285
Pretending 10 BE @ BrOWSENcocvciiieiiiriinie s nes e s e see e ss e s s e sae s sse s s snesnenaenns 286
APLL... et R AR R AR Ean 288
Requests With VAIUES.........cccorrrn s st 288
L o N ST 289
Example Program to Get Stock Price Information Using an API............cccccvvvnnnnnienennneniennens 291

TABLE OF CONTENTS

Example Program to Get Weather Information..........cccovvvininnsnininnsnsnersssse s 294
URL ENCOINGcovreerreereecrenesessesessesesesesessesessasesessesesssssssssessssessssssssssssssessssssssssssnssssnsssssssnns 297
3101111 T o SRS 299
Chapter 11: Data Structures........c.cccccmninemmnmnnsnmnmmsssnnss s ——————————— 301
L]0 TSSOSO PRARS 302
IS 30] RN 305
Representing a Grid or @ SPreadsheetc.ccvvvvvrererenrnie s se e saees 306
Representing the World of an Adventure GAMEcccccvvvverevesserrenessssessessessesessesessessssesessens 307
Reading a Comma-Separated Value (.CSV) Fileccvvvrvrierenessereresessessessessessssessessessssessensens 311
T 0] 0 TS 316
Using the in Operator on @ DIiCtIONArYccvvcrvnenesnrne s 319
Programming Challengecccuvririnnincncrn s s st 320
A Python Dictionary to Represent a Programming Dictionaryc.cccovverrrenernscsensesesenenennes 322
Iterating Through @ DiCHONAIYccoeeerrierreer e 323
Combining Lists and DIiCtIONANIESc.ccoerenmrnnerrnessre s sessesenns 325
JSON: JavaScript Object Notation..........coucvrenennnernsesnesessse s sessessssenens 328
Example Program to Get Weather Data............ccccvvvirninnnini s sesesaens 331
XML DAEA. ... bbb 334
Accessing Repeating Groupings in JSON and XML........ccccoovvrrerreriennnensensesensssessessesessssessessens 338
£ 1134 7R 341
Chapter 12: Where to GO from Here........cccocuunmsssssmsssnmmsssmsssssssssssssssssssssssssssssssnnss 343
Python Language Documentationcccucvveininiinne s ses s s e e sse s saenns 343
Python Standard LIDIArYccccvevevennnnieniesssessesesssssssessessessssessessesssssssessesssssssessessesssssssesaens 344
Python External PaCKages.........cccvvriniiinieniennsinse s s sss e s sse s e snens 345
Python Development ENVIrONMENES ... sessesnens 346
Places to Find AnSWers 10 QUESTIONSc.covrueenenererensesese e sesens 347
Projects and Practice, Practice, PractiCe........c.ccccvvvirninvninnnn s 347
£ 11T 7 S 348
INO@X . ueeeiiismnnsssnnnsssnnnsssannsssnnssssanssssannssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnnnsssnnss 349

xii

About the Author

Irv Kalb is an adjunct professor at UCSC (University
of California, Santa Cruz) Extension Silicon Valley and
Cogswell Polytechnical College. He has been teaching
software development classes since 2010.

Irv has worked as a software developer, manager of
_ software developers, and manager of software development
‘%\\\:\ projects. He has been an independent consultant for many
%.l\\\\ years with his own company, Furry Pants Productions,

where he has concentrated on educational software. Prior

to that, he worked as an employee for a number of high-tech companies. He has BS
and MS degrees in computer science.

Recently, he has been a mentor to a number of local competitive robotics teams.

His previous publications include numerous technical articles, two children’s
edutainment CD-ROMs (about Darby the Dalmatian), an online e-book on object-oriented
programming in the Lingo programming language, and the first book on Ultimate Frisbee,
Ultimate: Fundamentals of the Sport (Revolutionary Publications, 1983).

He was highly involved in the early development of the sport of Ultimate Frisbee.

xiii

About the Technical Reviewer

Mark Furman, MBA is a systems engineer, author, teacher, and entrepreneur. For the
last 16 years he has worked in the information technology field with a focus on Linux-
based systems and programming in Python. He’s worked for a range of companies
including Host Gator, Interland, Suntrust Bank, AT&T, and Winn-Dixie. Currently he
has been focusing his career on the maker movement and has launched Tech Forge
(techforge.org), which focuses on helping people start a makerspace and help sustain
current spaces. He holds an MBA degree from Ohio University. You can follow him on
Twitter @mfuxrman.

Acknowledgments

I would like to thank the following people, without whom this book would not have been
possible:

My wonderful wife, Doreen, who is the glue that keeps our family together.

Our two sons, Jamie and Robbie, who keep us on our toes.

Our two cats, Chester and Cody (whom we think of as people).

Mariah Armstrong, who created all the graphics in this book. I am not an artist
(I don’t even play one on TV). Mariah was able to take my “chicken scratches” and turn
them into very clear and understandable pieces of art.

Chris Sasso and Ravi Chityala for their technical reviews and helpful suggestions.

Luke Kwan, Catherine Chanse, and Christina Ri at the Art Institute of California-
Silicon Valley.

Andy Hou at the UCSC-Silicon Valley Extension.

Jerome Solomon at Cogswell Polytechnical College, who first suggested that I
consider getting into Python.

Jill Balzano, Jim Markham, Mark Furman, and Todd Green at Apress for all the work
they did reviewing, editing, and expertly answering all my questions.

All the students who have been in my classes over many years at the Art Institute
California-Silicon Valley, Cogswell Polytechnical College, and the UCSC Silicon Valley
Extension. Their feedback, suggestions, smiles, frowns, light-bulb moments, frustrations,
and knowing head-nods were extremely helpful in shaping the content of this book.

Finally, Guido van Rossum, without whom Python would not exist.

xvii

CHAPTER 1

Getting Started

Congratulations! You have made a wise decision. No, not the decision to buy this book,
although I think that will turn out to be a wise decision also. I mean you have made a
wise decision to learn the basics of computer programming using the Python language.

In this book, I teach you the fundamentals of writing computer software. I assume
that you have never written any software before, so I start completely from scratch. The
only requirements are that you possess a basic knowledge of algebra and a good sense
oflogic. As the book progresses, each chapter builds upon the information learned in
the previous chapter(s). The overall goal is to give you a solid introduction to the way
that computer code and data interact to form well-written programs. I introduce the
key elements of software, including variables, functions, if/else statements, loops,
lists, and strings. I offer many real-world examples that should help explain the uses of
each of these elements. I also give definitions to help you with the new vocabulary that I
introduce.

This book is not intended to be comprehensive. Rather, it is an introduction that
gives you a solid foundation in programming. The approach is highly interactive, asking
you to create small programs along the way as a chance to practice what has been
explained in each chapter. By the end of the book, you should be comfortable writing
small to medium-sized programs in Python.

This first chapter covers the following topics:

e Introducing Python

e Getting Python installed on your computer
e Using IDLE and the Python Shell

e Writing your first program: Hello World

o Creating, saving, and running Python files

¢ Working with IDLE on multiple platforms

© Irv Kalb 2018
1. Kalb, Learn to Program with Python 3, https://doi.org/10.1007/978-1-4842-3879-0_1

CHAPTER 1 GETTING STARTED

What Is Python?

Python is a general-purpose programming language. That means it was designed and
developed to write software for a wide variety of disciplines. Python has been used to
write applications to solve problems in biology, chemistry, financial analysis, numerical
analysis, robotics, and many other fields. It is also widely used as a scripting language for
use by computer administrators, who use it to capture and replay sequences of computer
commands. It is different from a language like HTML (HyperText Markup Language),
which was designed for the single purpose of allowing people to specify the layout of a
web page.

Once you learn the basic concepts of a programming language like Python, you
find that you can pick up a new computer languages very quickly. No matter what the
language (and there are many) the underlying concepts are very similar. The key things
that you learn about—variables, assignment statements, if statements, while loops,
function calls—are all concepts that are easily transferable to any other programming
language.

Installing Python

Python was created in the 1990s by Guido van Rossum. He is affectionately known as
Python’s Benevolent Dictator for Life. The language has two current versions: 2.7 and
3.6. Version 2.7 is still widely used, but its “end of life” has recently been announced.
Therefore, this version of the book will use the newer Python 3, as it is known. With
respect to the contents of this book, there are only a few differences between the versions
of the language. Where appropriate, I point out how something presented in Python 3
was handled in Python 2.

Python is maintained as an open source project by a group called the Python
Software Foundation. Because it is open source, Python is free. There is no single
company that owns and/or sells the software. You can get everything you need to write
and run all the Python programs in this book by simply downloading Python from the
Internet. I'll explain how you can get it and install it.

The center of the Python universe is at www. python.org.

Bring up the browser of your choice and go to that address. The site changes over
time, but the essential functionality should remain the same. On the main page, there
should be a Downloads button or rollover. Once you're in the Downloads area, you

http://www.python.org

CHAPTER 1 GETTING STARTED

should be able to select Windows, Mac, or Other Platforms (which includes Linux).
After choosing your operating system, you should get an opportunity to choose between
versions 3.x.y (whatever is the current subversion of Python 3) and version 2.x.y
(whatever is the current subversion of Python 2). Choose version 3.x.y.

Clicking the button downloads an installer file. On a Mac, the downloaded file has
aname like python-3.6.4-macosx10.6pkg. On a Windows computer, the file has a
name like python-3.6.4-msi. On either platform, find the file that was downloaded and
double-click it. That should start the installation process, which should be very simple.

IDLE and the Python Shell

There are many different software development environments (applications) that you can
use to write code in Python. It may seem odd that you use a program to write a program,
but that’s what a software development environment is. Some of these environments are
free; others can be costly. They differ in the tools they offer to help programmers be more
efficient.

The environment we will use in this book is called IDLE. You might think that IDLE
is an acronym, maybe Interactive DeveLopment Environment. When the name was
chosen, it didn’t mean anything. In fact, the name Python doesn’t refer to the snake.
Apparently, Guido van Rossum was a big fan of Monty Python’s Flying Circus, a TV
series by a well-known comedy group from Britain, and he named the language after
them. One of the founding members of Monty Python was Eric Idle. The name IDLE is a
reference to him.

IDLE is free. When you download and run the Python installer, it installs IDLE on
your computer. Once installed, you can find IDLE on a Mac by opening the applications
folder and locating the folder named Python 3.x. Once you open it, you should see the
IDLE application. To open IDLE, double-click the icon. On Windows, IDLE is installed
in the standard Program Files folder. If your version of Windows has a Start button, click
the Start button and type IDLE in the type-in field. Otherwise, you might have to do a
Control+R or Control+Q to bring up a dialog box where you can type IDLE. However you
open IDLE, you should see a window with contents that look something like this:

Python 3.6.1 (v3.6.1:69c0db5050, Mar 21 2017, 01:21:04)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "copyright", "credits" or "license()" for more information.
>>>

CHAPTER 1 GETTING STARTED

This window is called the Python Shell. In fact, the title of the window should be
Python 3.x.y Shell.

Hello World

There is a tradition that when programmers learn a new computer language, they try
writing what is called the Hello World program. That is, just to make sure they can get
something to work, they write a simple program that writes out “Hello World!”

Let’s do that now with Python. The Python Shell (commonly just called the Shell)
gives you a prompt that looks like three greater-than signs. This is called the chevron
prompt or simply the prompt. When you see the prompt, it means the Shell is ready for
you to type something. Throughout this book, I strongly encourage you to use the IDLE
environment by trying out code as I explain it. At the prompt, enter the following:

>>> print('Hello World!")
Then press the Return key or Enter key. When you do, you should see this:

>>> print('Hello World!")
Hello World!
>>>

Congratulations! You have just written your first computer program. You told the
computer to do something, and it did exactly what you told it to do. My work is done
here. You're not quite ready to add Python programmer to your résumé and get a job as a
professional computer programmer, but you are off to a good start!

Note If you don’t like the font and/or size of the text used in the Shell, you can
choose IDLE » Preferences (Mac) or Configure IDLE (Windows) and easily change
either or both.

One of the key advantages of the Python language is how readable it is. The program
you just wrote is simply the word print, an open parenthesis, whatever you want to be
printed (inside quotes), and a closing parenthesis. Anyone can understand the Hello
World program written in Python. But to make this point very clear, let’s see what you
have to do to write the Hello World program in some other popular languages.

CHAPTER 1 GETTING STARTED

You've probably heard of the language called C, perhaps the most widely used
programming language in the world. Here is what you have to write in C to get the same
results:

#include <stdio.h>

int main(void)

{
printf("Hello World!\n");
return O;

}

Notice all the brackets, parentheses, braces, and semicolons you need to have, along
with how many lines you have to write?

There is another language called C++, which is a modification of the original C
language to give it more power. Here’s what the Hello World program looks like in C++:

#include "std 1lib facilities.h"

int main()
{
cout << "Hello World!\n";
return 0;
}
Not surprisingly, it also has many brackets, parentheses, braces, and semicolons.
Finally, here is the same Hello World program written in Java, yet another popular
computer language:

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World!");

Again, there are many brackets, parentheses, and semicolons, and many words with
meanings that are not immediately obvious.

By comparison, notice how English-like, simple, and readable the Python version
is. This readability and simplicity are big reasons why Python is growing in popularity,
especially as a language used to teach programming to beginners.

CHAPTER 1 GETTING STARTED

Creating, Saving, and Running a Python File

So far, you have only seen a single line of Python code:
>>> print('Hello World!")

You typed it into the Shell and pressed Enter or Return to make it run. Typing one
line at a time into the Shell is a great way to learn Python, and it is very handy for trying
out things quickly. But soon I'll have you writing programs with tens, hundreds, and
maybe thousands of lines of code. The Shell is not an appropriate place for writing large
programs. Python, like every other computer language, allows you to put the code you
write into a file and save it. Programs saved this way can be opened at any time and run
without having to retype them. I'll explain how we do this in Python.

Just like any standard word processor or spreadsheet program, to create a new file in
IDLE, you go to the File menu and select New File (denoted from here on as File » New
File). You can also use the keyboard shortcuts Control+N (Windows) or Command+N
(Mac).

This opens a new, blank editing window, waiting for you to enter Python code. It
behaves just like any text editing program you have ever used. You enter your Python
code, line by line, similar to the way that you did it in the Shell. However, when you
press Return or Enter at the end of a line, the line does not run—it does not produce
immediate results as it did in the Shell. Instead, the cursor just moves down to allow
you to enter another line. You can use all the standard text-editing features that you
are used to: Cut, Copy, Paste, Find, Replace, and so on. You can move around the
lines of code using the arrow keys or by clicking the mouse. When a program gets
long enough, scrolling becomes enabled. You can select multiple lines using the
standard click-and-drag or click to create a starting point and Shift-click to mark an
ending point.

Let’s build a simple program containing three print statements. Open a new file.
Notice that when you open the file, it is named Untitled in the window title. Enter the
following:

print('I am now entering Python code into a Python file.')
print('When I press Return or Enter here, nothing happens.")
print('This is the last line.')

CHAPTER 1 GETTING STARTED

When you type the word print, IDLE colorizes it (both here in the editing window
and when you type it in the Shell). This is IDLE letting you know that this is a word that
it recognizes. IDLE also turns all the words enclosed in quotes to green. This also is an
acknowledgement from IDLE that it has an understanding of what you are trying to say.

Notice that when you started typing, the window title changed to *Untitled*. The
asterisks around the name are there to show that the contents of the file have been
changed, but the file has not been saved. That is, IDLE knows about the new content, but
the content has not yet been written to the hard disk. To save the file, press the standard
Control+S (Windows) or Command+S (Mac). Alternatively, you can click File » Save.
Because this is the first time the file is being saved, you see the standard Save dialog box.
Feel free to navigate to a folder where you are able to find your Python files(s), or click
the New Folder button to create a new folder. In the top of the box, where it says “Save
As’, enter a name for this file. Because we are just testing things out, you can name the
file Test. However, Python filenames should always end with a . py extension. Therefore,
you should enter the name Test.py in the Save As box.

Note If you save your Python file without a . py extension, IDLE will not recognize
it as a Python file. If Python does not know that your file is a Python file, it will not
colorize your code. This may not seem important now, but it will turn out to be very
helpful when you start writing larger programs. So make it a habit right from the
start to always ensure that your Python file names end with the. py extension.

Now that we have a saved Python file, we want to run, or execute, the statements in
the file. To do that, click Run » Run Module or press the F5 shortcut key. If everything
went well, the program should print the following in the Shell:

I am now entering Python code into a Python file.
When I press Return or Enter here, nothing happens.
This is the last line.

Now let’s quit IDLE by pressing Control+Q (Windows) or Command+Q (Mac) keys.
Alternatively, you can click IDLE » Exit (Windows) or IDLE » Quit IDLE (Mac).

When you are ready to open IDLE again, you have choices. You can open IDLE by
typing IDLE into the Start menu (Windows) or by double-clicking the IDLE icon (Mac).
If you then want to open a previously saved Python file, you can click File » Open and
navigate to the file you want to open.

CHAPTER 1 GETTING STARTED

However, if you want to open IDLE and open a previously saved Python file, you can
navigate to the saved Python file (for example, find the Test. py file that you just saved)
and open IDLE by opening the file. On Windows, if you double-click the icon, a window
typically opens and closes very fast. This runs the Python program, but does not keep
the window open. Instead, to open the file and IDLE, right-click the file icon. From the
context menu that appears, select the second item, Edit with IDLE.

On a Mac, you can simply double-click the file icon. If double-clicking the Python
file opens a program other than IDLE, you can fix that with a one-time change. Quit
whatever program opened. Select the Python file. Press Command+I (or click File »
Get Info), which opens a long dialog box. In the section labeled “Open with’, select the
IDLE application (IDLE.app). Finally, click the Change All button. Once you do that,
you should be able to double-click any file whose name ends in . py, and it should
open with IDLE.

Programming typically involves iterations of edits to one or more Python files.
Each time you make changes and you want to test the new code, you must save the
file and then run it. If you don’t save the file before you try to run it, IDLE will prompt
you by asking you to save the file. You’ll quickly become familiar with the typical
development cycle of edit your code, save the file (Command+S or Control+S), and
run the program (F5).

IDLE on Multiple Platforms

One other very nice feature of Python and IDLE is that the environment is almost
completely platform independent. That is, the IDLE environment looks almost identical
on a Windows computer, Mac, or Linux system. The only differences are those associated
with the particular operating system (such as the look of the window’s title bar, the
location of the menus, the look of the dialog boxes, and so on). These are very minor
details. Overall, the platform you run on does not matter.

Perhaps even more importantly, the code you write is platform independent. If
you create a Python file on one platform, you can move that file to another platform
and it will open and run just fine. Many programmers use multiple systems to develop
Python code. In fact, even though I typically develop most of my Python code on a Mac,
I often bring these same files into classrooms, open them, teach with them on Windows
systems.

CHAPTER 1 GETTING STARTED

Summary

In this chapter, you got up and running with Python. You should now have Python
installed on your computer and have a good understanding of what the IDLE
environment is. You built the standard Hello World program in the Shell, and then used
the editor window to build, save, and run a simple multiline Python program (whose
name ends in . py) made up of print statements. Finally, you learned that Python and
the IDLE environment are platform independent.

CHAPTER 2

Variables and Assignment
Statements

This chapter covers the following topics:

A sample Python program

Building blocks of programming

Four types of data

What a variable is

Rules for naming variables

Giving a variable a value with an assignment statement
A good way to name variables

Special Python keywords

Case sensitivity

More complicated assignment statements
Print statements

Basic math operators

Order of operations and parentheses

A few small sample programs

Additional naming conventions

How to add comments in a program

Use of “whitespace”

Errors in programs

© Irv Kalb 2018

1. Kalb, Learn to Program with Python 3, https://doi.org/10.1007/978-1-4842-3879-0_2

11

CHAPTER 2 VARIABLES AND ASSIGNMENT STATEMENTS

A Sample Python Program

Let’s jump right in and see an example of what Python code looks like. You are probably
familiar with a simple toy called the Magic 8-Ball, made by Mattel, Inc. To play with the
toy, you ask it a yes-or-no question, turn the ball over, and the ball gives you one of a
number of possible answers. Here is the output of a Python program that simulates the
Magic 8-Ball:

Ask the Magic 8-Ball a question (Return or Enter to quit): Will this be a
great book?
Absolutely!

Ask the Magic 8-Ball a question (Return or Enter to quit): Will I learn to
program in Python?
Answer is foggy, ask again later.

Ask the Magic 8-Ball a question (Return or Enter to quit): Will I learn to
program in Python?
You may rely on it.

Ask the Magic 8-Ball a question (Return or Enter to quit): Will I be able
to play football in the NFL?
No way, dude!

Ask the Magic 8-Ball a question (Return or Enter to quit): Will I make a
million dollars?
Absolutely!

Ask the Magic 8-Ball a question (Return or Enter to quit): Does the Magic
8-Ball ever make mistakes?
No way, dude!

Ask the Magic 8-Ball a question (Return or Enter to quit):

12

CHAPTER 2 VARIABLES AND ASSIGNMENT STATEMENTS

Now, let’s jump right in and take a look at the underlying code of this program.
I'm showing you this just to give you a feeling for what Python code looks like. I am
certainly not expecting you to understand much of this code. At this point, the details are

unimportant. Here it is:
import random # Allow the program to use random numbers

while True:
print() # prints a blank line

usersQuestion = input('Ask the Magic 8-Ball a question
(press enter to quit): ')
if usersQuestion == “:

break # we're done

randomAnswer = random.randrange(0, 8) # pick a random number

if randomAnswer ==
print('It is certain.')

elif randomAnswer ==
print('Absolutely!")

elif randomAnswer ==
print('You may rely on it.")

elif randomAnswer

:3:
print('Answer is foggy, ask again later.')

elif randomAnswer == 4:

print('Concentrate and ask again.')

elif randomAnswer ==
print('Unsure at this point, try again.')

elif randomAnswer == 6:
print('No way, dude!')

elif randomAnswer ==
print('No, no, no, no, no.')

13

CHAPTER 2 VARIABLES AND ASSIGNMENT STATEMENTS

Here’s a very quick explanation: at the top, there is a line that allows the program
to use random numbers. Then there is a line that sayswhile True. This line creates
something called a loop, which is a portion of a program that runs over and over again.
In this case, it allows the user to ask a question and get an answer, and then enter
another question and get another answer, and on and on.

Moving down, there is a line that causes Ask the Magic 8-Ball a question tobe
printed out and allows the user to type a question for the Magic 8-Ball to answer.

Skipping down a few lines, the program generates a random number between 0 and 7.
After generating the random number, the program then checks to see if the value of the
random number is 0. If so, it tells the user the answer: It is certain. Otherwise, if the
value of the randomly chosen number is 1, it tells the user: You may rely on it.

The rest of the lines work similarly, checking the random number and giving
different outputs.

After the program prints an answer, because the program is inside the loop, the
program goes around again and tells the user to ask another question. And the process
keeps going.

As I said, don’t worry about the details of the program—just get a sense of how the
program does what it does. But there are some things to notice. First, see how readable
this code is. With only this brief introduction, you can probably get a feeling for the basic
logical flow of how the program operates. Second, notice that the program asks the user
for input, does some computation, and generates some output. These are the three main
steps in almost all computer programs.

Let’s get into programming 101. This may be extremely basic, but I want to start right
at the beginning, create a solid foundation, and then build on that.

The Building Blocks of Programming

The two basic building blocks of programming are code and data. Code is a set of
instructions that tell the computer what to perform and how it should perform. But I
want to start our discussion with data.

Data refers to the quantities, characters, and/or symbols on which operations are
performed with a computer. Anything you need the computer to remember is a piece
of data. Simple examples of data include the number of students in class, grade point
average, name, whether a switch is in an on or off position, and so on.

14

CHAPTER 2 VARIABLES AND ASSIGNMENT STATEMENTS

There are many different types of data, but this book deals mostly with four basic
types, which I describe in the next section.

Four Types of Data

The four basic types of data are called integer numbers, floating-point numbers, strings,
and Booleans. This section explains and provides examples of each of these types of data.

Integers

Integer numbers (or simply, integers) are counting numbers, like 1, 2, 3, but also include
0 and negative numbers. The following are examples of data that is expressed as integers:

e Number of people in a room

e Personal or team score in a game
e Course number

e Date in a month

o Temperature (in terms of number of degrees)

Floats

Floating-point numbers (or simply floats) are numbers that have a decimal point in
them. The following are examples of data that is expressed as floating-point numbers:

e Grade point average
o Price of something
e Percentages

o Irrational numbers, like pi

15

CHAPTER 2 VARIABLES AND ASSIGNMENT STATEMENTS

Strings

Strings (also called text) are any sequences of characters. Examples of data that is
expressed as strings include the following:

¢ Name

e Address

e Course name

o Title of a book, song, or movie
e Sentence

¢ Name of a file on a computer

Booleans

Booleans are a type of data that can only have one of two values: True or False. Booleans
are named after the English mathematician George Boole, who created an entire field of
logic based on these two-state data items. The following are some examples of data that
can be expressed as Booleans:

o The state of a light switch: True for on, False for off

o Inside or outside: True for inside, False for outside

o Whether someone is alive or not: True for alive, False for dead

o Ifsomeone is listening: True for listening, False for not listening

It might seem that integer and floating-point data have overlaps. For example, there
is an integer 0 and there is a floating-point 0.0. There is an integer 1 and a floating-point
1.0. Although these may appear to be the same thing to us humans, integers and floats
are handled very differently inside the computer. Without getting too wrapped up in the
details, it is easier for the computer to represent and operate with integers. But when
we have a value with a decimal point, we need to use a floating-point number instead.
Whenever we represent a value, we choose the appropriate numeric data type. As you
will see, Python makes a clear distinction between these two types of data.

There are many other types of data in the computer world. For example, you are
probably familiar with music being stored in MP3 format or video being stored in MP4.
These are other representations of data. However, to make things simple and clear, I'll
use just the four basic types of data in most of this book.

16

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Getting Started
	What Is Python?
	Installing Python
	IDLE and the Python Shell
	Hello World
	Creating, Saving, and Running a Python File
	IDLE on Multiple Platforms
	Summary

	Chapter 2: Variables and Assignment Statements
	A Sample Python Program
	The Building Blocks of Programming
	Four Types of Data
	Integers
	Floats
	Strings
	Booleans

