

Hands-On Software
Architecture with C# 8 and
.NET Core 3

Architecting software solutions using microservices, DevOps,
and design patterns for Azure Cloud

Gabriel Baptista
Francesco Abbruzzese

BIRMINGHAM - MUMBAI

www.EBooksWorld.ir

Hands-On Software Architecture with C# 8
and .NET Core 3
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Alok Dhuri
Content Development Editor: Ruvika Rao
Senior Editor: Afshaan Khan
Technical Editor: Ketan Kamble
Copy Editor: Safis Editing
Project Coordinator: Francy Puthiry
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Jyoti Chauhan

First published: November 2019

Production reference: 1291119

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78980-093-7

www.packt.com

www.EBooksWorld.ir

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Gabriel Baptista is a software architect who technically leads a team in the most diverse
projects for retail and industry, using a dozen varieties of Microsoft products. He has
become a specialist in Azure Platform-as-a-Service (PaaS) solutions since designing a
Software-as-a-Service (SaaS) platform in partnership with Microsoft. Besides all that, he is
also a college computing professor who has published many papers and teaches different
subjects related to software engineering, development, and architecture. He is also a
speaker on Channel 9, one of the most prestigious and active community websites for the
.NET stack. As well as that, he is a cofounder of a start-up for developing mobile
applications, where Scrum, design thinking, and DevOps philosophy are the keys to
delivering user needs.

To my incredible kids, Murilo and Heitor, and my dear wife, Denise, who have always
allowed me to move forward.

Francesco Abbruzzese is the author of the book MVC Controls Toolkit. He has also
contributed to the diffusion and evangelization of the Microsoft web stack since the first
version of ASP.NET MVC through tutorials, articles, and tools. He writes about .NET and
client-side technologies on his blog, Dot Net Programming, and in various online magazines.
His company, Mvcct Team, implements and offers web applications, AI software, SAS
products, tools, and services for web technologies associated with the Microsoft stack. He
has moved from AI systems, where he implemented one of the first decision support
systems for banks and financial institutions, to the video games arena, with top-10 titles
such as Puma Street Soccer.

To my beloved parents, to whom I owe everything.

About the reviewers
Efraim Kyriakidis has almost 20 years of experience in software development. He got his
diploma as an electrical and software engineer from Aristotle University of Thessaloniki in
Greece. He has used .NET since its beginnings with version 1.0. In his career, he has mainly
focused on Microsoft technologies. He is currently employed by Siemens AG in Germany
as a senior software engineer.

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer who uses
Microsoft technologies. He works for React Consulting. He is a Microsoft Certified Solution
Developer for .NET, Microsoft Certified Application Developer for .NET, and Microsoft
Certified Professional. He is also a prolific author and technical reviewer. Over the last 10
years, he's written articles for Italian and international magazines and has co-authored
more than 10 books on a variety of computer topics.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Transforming Customer Needs in Real-World
Applications
Chapter 1: Understanding the Importance of Software Architecture 9

Technical requirements 10
What is software architecture? 10

Creating an Azure account 12
Software development process models 14

Reviewing traditional software development process models 14
Understanding the waterfall model principles 14
Analyzing the incremental model 15

Understanding agile software development process models 16
Getting into the Scrum model 17

Enabling aspects to be gathered to design high-quality software 18
Understanding the requirements gathering process 18

Practicing the elicitation of user needs 19
Analyzing requirements 20
Writing the specifications 21
Reviewing the specification 21

Using design thinking as a helpful tool 22
Understanding the principles of scalability, robustness, security, and
performance 23

Some cases where the requirements gathering process impacted
system results 24

Case 1 – my website is too slow to open that page! 24
Understanding caching 25
Applying asynchronous programming 25
Dealing with object allocation 25
Getting better database access 26

Case 2 – the user's needs are not properly implemented 27
Case 3 – the usability of the system does not meet user needs 28

Case study – detecting user needs 28
Book case study – introducing World Wild Travel Club 29
Book case study – understanding user needs and system requirements 30

Summary 32
Questions 32
Further reading 33

Chapter 2: Functional and Nonfunctional Requirements 34

Table of Contents

[ii]

Technical requirements 35
How does scalability interact with Azure and .NET Core? 35

Creating a scalable web app in Azure 36
Vertical scaling (Scale up) 39
Horizontal scaling (Scale out) 41

Creating a scalable web app with .NET Core 42
Performance issues that need to be considered when programming
in C# 46

String concatenation 47
Exceptions 48

Multithreading environments for better results – do's and don'ts 49
Usability – why inserting data takes too much time 52

Designing fast selection logic 53
Selecting from a huge amount of items 57

The fantastic world of interoperability with .NET Core 58
Creating a service in Linux 60

Book use case – understanding the main types of .NET Core
projects 61
Summary 63
Questions 63
Further reading 64

Chapter 3: Documenting Requirements with Azure DevOps 65
Technical requirements 65
Introducing Azure DevOps 65
Organizing your work using Azure DevOps 70

Azure DevOps repository 71
Package feeds 73
Test plans 75
Pipelines 76

Managing system requirements in Azure DevOps 77
Epics work items 78
Features work items 78
Product Backlog items/User Story work items 79

Book use case – presenting use cases in Azure DevOps 80
Summary 84
Questions 85
Further reading 85

Section 2: Architecting Software Solutions in a
Cloud-Based Environment
Chapter 4: Deciding the Best Cloud-Based Solution 88

Technical requirements 88
Different software deployment models 89

Table of Contents

[iii]

Infrastructure as a service and Azure opportunities 89
Security responsibility in IaaS 91

PaaS – a world of opportunities for developers 92
Web apps 93
Azure SQL Server 94
Azure Cognitive Services 96

SaaS – just sign in and get started! 100
Understanding what serverless means 100
Why are hybrid applications so useful in many cases? 101
Use case – a hybrid application 102

Book use case – which is the best cloud platform for this use case? 103
Summary 104
Questions 104
Further reading 105

Chapter 5: Applying a Microservice Architecture to Your Enterprise
Application 106

Technical requirements 107
What are microservices? 107

Microservices and the evolution of the concept of modules 109
Microservice design principles 110
Containers and Docker 114

When do microservices help? 116
Layered architectures and microservices 116
When is it worth considering microservice architectures? 119

How does .NET Core deal with microservices? 120
.NET Core communication facilities 121
Resilient task execution 123
Using generic hosts 125
Visual Studio support for Docker 129
Azure and Visual Studio support for microservice orchestration 134

Which tools are needed to manage microservices? 137
Defining your private Docker registry in Azure 137
Azure Service Fabric 139

Step 1: Basic information 140
Step 2: Cluster configuration 141
Step 3: Security configuration 143

Azure Kubernetes Service (AKS) 146
Use case – logging microservices 150

Ensuring message idempotency 154
The Interaction library 157
Implementing the receiving side of communication 159
Implementing service logic 162
Defining the microservice's host 168
Communicating with the service 169

Table of Contents

[iv]

Testing the application 171
Summary 171
Questions 172
Further reading 172

Chapter 6: Interacting with Data in C# - Entity Framework Core 174
Technical requirements 175
Understanding ORM basics 175
Configuring Entity Framework Core 178

Defining DB entities 179
Defining the mapped collections 182
Completing the mapping configuration 183

Entity Framework Core migrations 184
Understanding stored procedures and direct SQL commands 188

Querying and updating data with Entity Framework Core 189
Returning data to the presentation layer 192
Issuing direct SQL commands 193
Handling transactions 195

Deploying your data layer 195
Understanding Entity Framework Core advanced feature – global
filters 196
Summary 197
Questions 198
Further reading 198

Chapter 7: How to Choose Your Data Storage in the Cloud 199
Technical requirements 200
Understanding the different repositories for different purposes 200

Relational databases 201
NoSQL databases 203
Redis 204
Disk memory 206

Choosing between structured or NoSQL storage 206
Azure Cosmos DB – an opportunity to manage a multi-continental
database 208

Cosmos DB client 215
Cosmos DB Entity Framework Core provider 216

Use case – storing data 217
Implementing the destinations/packages database with Cosmos DB 218

Summary 223
Questions 223
Further reading 224

Chapter 8: Working with Azure Functions 225
Technical requirements 225

Table of Contents

[v]

Understanding the Azure Functions App 226
Consumption Plan 227
App Service Plan 227

Programming Azure Functions using C# 228
Listing Azure Functions templates 232

Maintaining Azure Functions 233
Use case – implementing Azure Functions to send emails 235

First Step – creating Azure Queue Storage 237
Summary 243
Questions 243
Further reading 244

Section 3: Applying Design Principles for Software
Delivered in the 21st Century
Chapter 9: Design Patterns and .NET Core Implementation 247

Technical requirements 247
Understanding design patterns and their purpose 248

Builder pattern 249
Factory pattern 251
Singleton pattern 252
Proxy pattern 255
Command pattern 257
Publisher/Subscriber pattern 259
Dependency Injection pattern 260

Understanding the available design patterns in .NET Core 262
Summary 263
Questions 263
Further reading 264

Chapter 10: Understanding the Different Domains in Software
Solutions 265

Technical requirements 266
What are software domains? 266
Understanding domain-driven design 269

Entities and value objects 273
Using SOLID principles to map your domains 277

Aggregates 279
The repository and Unit of Work patterns 280
DDD entities and Entity Framework Core 282
Command Query Responsibility Segregation (CQRS) pattern 283
Command handlers and domain events 286
Event sourcing 289

Use case – understanding the domains of the use case 290
Summary 293

Table of Contents

[vi]

Questions 294
Further reading 294

Chapter 11: Implementing Code Reusability in C# 8 295
Technical requirements 295
Understanding the principles of code reusability 296

What is not code reuse? 296
What is code reuse? 298
Inserting reusability into your development cycle 299

Using .NET Standard for code reuse 300
Creating a .NET Standard library 300

How does C# deal with code reuse? 302
Object-oriented analysis 302
Generics 304

Use case – reusing code as a fast track to deliver good and safe
software 305
Summary 306
Questions 307
Further reading 307

Chapter 12: Applying Service-Oriented Architectures with .NET Core 308
Technical requirements 309
Understanding the principles of the SOA approach 309

SOAP web services 313
REST web services 315

The OpenAPI standard 321
REST services authorization and authentication 321

How does .NET Core deal with SOA? 324
A short introduction to ASP.NET Core 326
Implementing REST services with ASP.NET Core 330
ASP.NET Core service authorization 334
ASP.NET Core support for OpenAPI 337
.Net Core HTTP clients 341

Use case – exposing WWTravelClub packages 344
Summary 350
Questions 350
Further reading 351

Chapter 13: Presenting ASP.NET Core MVC 352
Technical requirements 353
Understanding the presentation layers of web applications 353
Understanding the ASP.NET Core MVC structure 354

How ASP.NET Core pipeline works 354
Loading configuration data and using it with the options framework 358
Defining the ASP.NET Core MVC pipeline 363

Table of Contents

[vii]

Defining controllers and ViewModels 368
Understanding Razor Views 373

Learning Razor flow of control statements 374
Understanding Razor View properties 376
Using Razor tag helpers 377
Reusing view code 381

What is new in .NET Core 3.0 for ASP.NET Core? 385
Understanding the connection between ASP.NET Core MVC and
design principles 387

Advantages of the ASP.NET Core pipeline 388
Server-side and client-side validation 388
ASP.NET Core globalization 389
The MVC pattern 394

Use case – implementing a web app in ASP.NET Core MVC 395
Defining application specifications 395
Defining the application architecture 396
Defining the domain layer 399
Defining the data layer 402
Defining the application layer 407
Controllers and views 412

Summary 418
Questions 418
Further reading 419

Section 4: Programming Solutions for an
Unavoidable Future Evolution
Chapter 14: Best Practices in Coding C# 8 421

Technical requirements 421
The more complex your code is, the worse a programmer you are 422

Maintainability index 423
Cyclomatic complexity 423
Depth of inheritance 427
Class coupling 428
Lines of code 430

Using a version control system 430
Dealing with version control systems in teams 431

Writing safe code in C# 431
try-catch 431
try-finally and using 432
The IDisposable interface 434

.NET Core tips and tricks for coding 434
WWTravelClub – dos and don'ts in writing code 436
Summary 437
Questions 437

Table of Contents

[viii]

Further reading 437

Chapter 15: Testing Your Code with Unit Test Cases and TDD 439
Technical requirements 440
Understanding automated tests 440

Writing automated (unit and integration) tests 442
Writing acceptance and performance tests 444

Understanding test-driven development (TDD) 445
Defining C# test projects 448

Using the xUnit test framework 449
Advanced test preparation and tear-down scenarios 451
Mocking interfaces with Moq 453

Use case – automating unit tests in DevOps Azure 455
Summary 463
Questions 464
Further reading 464

Chapter 16: Using Tools to Write Better Code 465
Technical requirements 466
Identifying a well-written code 466
Understanding and applying tools that can evaluate C# code 468

Applying extension tools to analyze code 472
Using Microsoft Code Analysis 2019 472
Applying SonarLint for Visual Studio 2019 474
Getting Code Cracker for Visual Studio 2017 as a helper to write better code 475
Checking the final code after analysis 475

Use case – evaluating the C# code before publishing the
application 477
Summary 479
Questions 479
Further reading 480

Section 5: Delivering Software Continuously and at a
High Quality Level
Chapter 17: Deploying Your Application with Azure DevOps 483

Technical requirements 484
Understanding SaaS 484

Adapting your organization to a service scenario 484
Developing software in a service scenario 485
Technical implications of a service scenario 485
Adopting a SaaS solution 486

Preparing a solution for a service scenario 487
Use case – deploying our package-management application with
Azure Pipelines 490

Table of Contents

[ix]

Creating the Azure Web App and the Azure database 490
Configuring your Visual Studio solution 492
Configuring Azure Pipelines 493
Adding a manual approval for the release 496
Creating a release 498

Summary 500
Questions 501
Further reading 501

Chapter 18: Understanding DevOps Principles 502
Technical requirements 503
Describing DevOps 503
Understanding DevOps principles 504

Defining continuous integration 504
Understanding continuous delivery and multistage environment with Azure
DevOps 505
Defining continuous feedback and the related DevOps tools 508

Monitoring you software with Application Insights 509
Using the Test and Feedback tool to enable feedback 515

The WWTravelClub project approach 520
Summary 521
Questions 521
Further Reading 522

Chapter 19: Challenges of Applying CI Scenarios in DevOps 523
Technical requirements 524
Understanding CI 524
Understanding the risks and challenges when using CI 525

Disabling continuous production deployment 526
Incomplete features 527
Unstable solution for testing 530

Understanding the WWTravelClub project approach 534
Summary 534
Questions 535
Further reading 535

Chapter 20: Automation for Software Testing 536
Technical requirements 536
Understanding the purpose of functional tests 537
Using unit testing tools to automate functional tests in C# 539

Testing the staging application 540
Testing a controlled application 541

Use case – automating functional tests 543
Summary 547
Questions 547

Table of Contents

[x]

Further reading 547

Appendix A: Assessments 548
Chapter 1 548
Chapter 2 548
Chapter 3 549
Chapter 4 549
Chapter 5 550
Chapter 6 550
Chapter 7 551
Chapter 8 551
Chapter 9 552
Chapter 10 553
Chapter 11 553
Chapter 12 554
Chapter 13 554
Chapter 14 555
Chapter 15 555
Chapter 16 556
Chapter 17 556
Chapter 18 557
Chapter 19 557
Chapter 20 558

Other Books You May Enjoy 559

Index 562

Preface
This book covers the most common design patterns and frameworks involved in software
architecture. It discusses when and how to use each pattern by providing you with practical
real-world scenarios. This book also presents techniques and processes such as DevOps,
microservices, continuous integration, and cloud computing so that you can have a best-in-
class software solution developed and delivered for your customers.

This book will help you to understand the product that your customer wants from you. It
will guide you to deliver and solve the biggest problems you could face during
development. It also covers the do's and don'ts that you need to follow when you manage
your application in a cloud-based environment. You will learn about different architectural
approaches, such as layered architectures, service-oriented architecture, microservices, and
cloud architecture, and understand how to apply them to specific business requirements.
Finally, you will deploy code in remote environments or on the cloud using Azure.

All the concepts in this book will be explained with the help of real-world practical use
cases where design principles make the difference when creating safe and robust
applications. By the end of the book, you will be able to develop and deliver highly scalable
enterprise-ready applications that meet the end customers' business needs.

It is worth mentioning that this book will not only cover the best practices that a software
architect should follow for developing C# and .NET Core solutions, but it will also discuss
all the environments that we need to master in order to develop a software product
according to the latest trends.

Who this book is for
This book is for engineers and senior developers who are aspiring to become architects or
wish to build enterprise applications with the .NET stack. Experience with C# and .NET is
required.

What this book covers
Chapter 1, Understanding the Importance of Software Architecture, explains the basics of
software architecture. This chapter will give you the right mindset to face customer
requirements, and then select the right tools, patterns, and frameworks.

Preface

[2]

Chapter 2, Functional and Nonfunctional Requirements, guides you in the first stage of
application development, that is, collecting user requirements and accounting for all other
constraints and goals that the application must fulfill.

Chapter 3, Documenting Requirements with Azure DevOps, describes techniques for
documenting requirements, bugs, and other information about your applications. While
most of the concepts are general, the chapter focuses on the usage of Azure DevOps.

Chapter 4, Deciding the Best Cloud-Based Solution, gives you a wide overview of the tools
and resources available in the cloud, and in particular on Microsoft Azure. Here, you will
learn how to search for the right tools and resources and how to configure them to fulfill
your needs.

Chapter 5, Applying a Microservice Architecture to Your Enterprise Application, offers a broad
overview of microservices and Docker containers. Here, you will learn how the
microservices-based architecture takes advantage of all the opportunities offered by the
cloud and you will see how to use microservices to achieve flexibility, high throughput,
and reliability in the cloud. You will learn how to use containers and Docker to mix
different technologies in your architecture as well as make your software platform-
independent.

Chapter 6, Interacting with Data in C# - Entity Framework Core, explains in detail how your
application can interact with various storage engines with the help of Object-Relational
Mappings (ORMs) and Entity Framework Core 3.0.

Chapter 7, How to Choose Your Data Storage in the Cloud, describes the main storage engines
available in the cloud and, in particular, in Microsoft Azure. Here, you will learn how to
choose the best storage engines to achieve the read/write parallelism you need and how to
configure them.

Chapter 8, Working with Azure Functions, describes the serverless model of computation
and how to use it in the Azure cloud. Here, you will learn how to allocate cloud resources
just when they are needed to run some computation, thus paying only for the actual
computation time.

Chapter 9, Design Patterns and .NET Core Implementation, describes common software
patterns with .NET Core 3 examples. Here, you will learn the importance of patterns and
best practices for using them.

Chapter 10, Understanding the Different Domains in a Software Solution, describes the modern
domain-driven design software production methodology, how to use it to face complex
applications that require several knowledge domains, and how to use it to take advantage
of cloud- and microservices-based architectures.

Preface

[3]

Chapter 11, Implementing Code Reusability in C# 8, describes patterns and best practices to
maximize code reusability in your C# .NET Core applications.

Chapter 12, Applying Service-Oriented Architectures with .NET Core, describes service-
oriented architecture, which enables you to expose the functionalities of your applications
as endpoints on the web or on a private network so that users can interact with them
through various types of clients. Here, you will learn how to implement service-oriented
architecture endpoints with ASP.NET Core, and how to self-document them with existing
OpenAPI packages.

Chapter 13, Presenting ASP.NET Core MVC, describes in detail the ASP.NET Core
framework. Here, you will learn how to implement web applications based on the Model-
View-Controller (MVC) pattern and how to organize them according to the prescriptions of
domain-driven design, described in Chapter 10, Understanding the Different Domains in a
Software Solution.

Chapter 14, Best Practices in Coding C# 8, describes best practices to be followed when
developing .NET Core applications with C# 8.

Chapter 15, Testing Your Code with Unit Test Cases and TDD, describes how to test your
applications. Here, you will learn how to test .NET Core applications with xUnit, and see
how easily you can develop and maintain code that satisfies your specifications with the
help of test-driven design.

Chapter 16, Using Tools to Write Better Code, describe metrics that evaluate the quality of
your software and how to measure them with the help of all the tools included in Visual
Studio.

Chapter 17, Deploying Your Application with Azure DevOps, describes how to automate the
whole deployment process, from the creation of a new release in your source repository,
through various testing and approval steps, to the final deployment of the application in
the actual production environment. Here, you will learn how to use Azure Pipelines to
automate the whole deployment process.

Chapter 18, Understanding DevOps Principles, describes the basics of the DevOps software
development and maintenance methodology. Here, you will learn how to organize your
application's continuous integration/continuous delivery cycle.

Chapter 19, Challenges of Applying CI Scenarios in DevOps, complements the description of
DevOps with continuous integration scenarios.

Preface

[4]

Chapter 20, Automation for Software Testing, is dedicated to automatic acceptance tests – that
is, tests that verify automatically whether a version of a whole application conforms with
the agreed specifications. Here, you will learn how to simulate user operations with
automation tools and how to use these tools together with xUnit to write your acceptance
tests.

To get the most out of this book
Do not forget to have Visual Studio Community 2019 or higher installed.

Be sure that you understand C# .NET principles.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- Software- Architecture- with- CSharp- 8. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Code in Action
You can see the code in action videos at http:/ /bit. ly/2Old2IG.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781789800937_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "They are copied in the final string just once, when you call sb.ToString() to
get the final result."

A block of code is set as follows:

[Fact]
public void Test1()
{
 var myInstanceToTest = new ClassToTest();
 Assert.Equal(5, myInstanceToTest.MethodToTest(1));
}

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In the Solution Explorer, you have the option to Publish... by right-clicking."

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Transforming

Customer Needs in Real-World
Applications

This section includes the first three chapters of the book. The idea is to make sure you
understand how to transform user requirements into the actual architectural needs that are
essential for project success, using the various architectural aspects and design
considerations involved in developing enterprise applications with C# and .NET Core.

In Chapter 1, Understanding the Importance of Software Architecture, we will discuss the
importance of software architecture and aspects related to .NET Core and C#. The chapter
will also discuss the importance of analyzing software requirements and designing for
principles such as scalability and robustness. No matter what software development cycle
you decide to have in your project, analyzing requirements will help you adhere to the goal
of the project. Without this, the success of your project is at risk. This chapter will present
some use cases where a lack of understanding of the requirements gathered led to project
failures. Besides this, in each case, we will provide practical advice that could help to
protect your software from the scenarios presented.

Once you have understood the process of gathering system requirements, in Chapter
2, Functional and Nonfunctional Requirements, we will prompt you to think about the impacts
that the requirements have on the architectural design. Scalability, performance,
multithreading, interoperability, and other subjects will be discussed, both their theory and
their practice.

Section 1: Transforming Customer Needs in Real-World Applications Chapter 1

[8]

To finish the first section, in Chapter 3, Documenting Requirements with Azure DevOps, we
will present Azure DevOps, which is the tool currently being provided by Microsoft to
enable an application development life cycle that follows the principles of the DevOps
philosophy. There are a variety of good features that can help you document and organize
your software, and the purpose of the chapter is to present an overview of those features.

This section includes the following chapters:

Chapter 1, Understanding the Importance of Software Architecture
Chapter 2, Functional and Nonfunctional Requirements
Chapter 3, Documenting Requirements with Azure DevOps

1
Understanding the Importance

of Software Architecture
Nowadays, software architecture is one of the most discussed topics in the software
industry, and for sure, its importance will grow more in the future. The more we build
complex and fantastic solutions, the more we need great software architectures to maintain
them. That is the reason why you decided to read this book. That is the reason why we
decided to write it.

For sure, it is not an easy task to write about this important topic, which offers so many
alternative techniques and solutions. The main objective of this book is not just to build an
exhaustive and never-ending list of available techniques and solutions, but also to show
how various families of techniques are related and how they impact, in practice, the
construction of a maintainable and sustainable solution.

The attention on how to create actual efficacious enterprise solutions increases as
users always need more new features in their applications. Moreover, the need to
deliver frequent application versions (due to a quickly changing market) increases the
obligation to have sophisticated software architecture and development techniques.

The following topics will be covered in this chapter:

The history of software development and the definition of software architecture
Software processes currently used by success enterprises
The process for gathering requirements

Understanding the Importance of Software Architecture Chapter 1

[10]

By the end of this chapter, you will be able to understand exactly what the mission of a
software architecture is. You will also learn what Azure is and how to create your account
in the platform. Besides considering this is an introductory chapter, you will get an
overview of software processes, models, and other techniques that will enable you to
conduct your team.

Technical requirements
This chapter will guide you on how to create an account in Azure, hence no code will be
provided.

What is software architecture?
If you are reading this book today, you should thank the computer scientists who decided
to consider software development as an engineering area. This happened in the last century
and, more specifically, at the end of the sixties, when they proposed that the way we
develop software is quite similar to the way we construct buildings. That is why we have
the name software architecture. Like in the design of a building, the main goal of a
software architect is to ensure that the software application is implemented well. But a
good implementation requires the design of a great solution. Hence, in a professional
development project, you have to do the following things:

Define the customer requirements for the solution.
Design a great solution to meet those requirements.
Implement the designed solution.
Validate the solution with your customer.
Deliver the solution in the working environment.

Software engineering defines these activities as the software development life cycle. All of
the theoretical software development process models (waterfall, spiral, incremental, agile,
and so on) are somehow related to this cycle. No matter which model you use, if you do not
work with the essential tasks presented earlier during your project, you will not deliver
acceptable software as a solution.

Understanding the Importance of Software Architecture Chapter 1

[11]

The main point about designing great solutions is totally connected to the purpose of this
book. You have to understand that great real-world solutions bring with them a few
fundamental constraints:

The solution needs to meet user requirements.
The solution needs to be delivered on time.
The solution needs to adhere to the project budget.
The solution needs to deliver good quality.
The solution needs to guarantee a safe and efficacious future evolution.

Great solutions need to be sustainable and you have to understand that there is no
sustainable software without great software architecture. Nowadays, great software
architectures depend on both tools and environments to perfectly fit users' requirements.
To explain this, this book will use some great tools provided by Microsoft:

Azure: This is the cloud platform from Microsoft, where you will find all of the
components it provides to build advanced software architecture solutions.
Azure DevOps: This is the application life cycle management environment
where you can build solutions using the latest approach for developing software,
that is, DevOps.
C#: This is one of the most used programming languages in the world. C# runs
on small devices up to huge servers in different operating systems and
environments.
.NET Core: This is an open source development platform that is maintained by
the Microsoft and .NET community on GitHub.
ASP.NET Core: This is an open source multi-platform environment developed
using .NET Core to build web applications and is hosted in the cloud or even on
standard servers (on-premises).

Being a software architect means understanding the aforementioned and a lot of other
technologies. This book will guide you on a journey where you, as a software architect
working in a team, will provide optimal solutions with the tools listed. Let's start this
journey by creating your Azure account.

Understanding the Importance of Software Architecture Chapter 1

[12]

Creating an Azure account
Microsoft Azure is one of the best cloud solutions currently available on the market. It is
important to know that, inside Azure, we will find a bunch of components that can help us
in the architecture of twenty-first century solutions.

This subsection will guide you in creating an Azure account. If you already have one, you
can skip this part:

You can access the Azure portal using this URL: https:/ /azure. microsoft. com.1.
Here, you will find a website, as follows. The translation to your native language
will probably be set automatically:

Once you have accessed this portal, it is possible to sign up. If you have never2.
done this before, it is possible to sign up for free, so you will be able to use some
Azure features without spending any money.

https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com

Understanding the Importance of Software Architecture Chapter 1

[13]

Once you finish the form, you will be able to access the Azure panel. As you can3.
see in the following screenshot, the panel shows a dashboard that you can
customize, and a menu on the left, where you can set up the Azure components
you are going to use in your solution. Throughout this book, we will come back
to this screenshot to set up the components that create great opportunities for
modern software architecture:

Understanding the Importance of Software Architecture Chapter 1

[14]

Once you have your Azure account created, you are ready to understand how a software
architect can conduct a team to develop software taking advantage of all of the
opportunities offered by Azure. However, it is important to keep in mind that a software
architect needs to understand something more than specific technologies because,
nowadays, this role is played by people who are expected to define how the software will
be delivered. A software architect not only architects the base of software, but they also
determine how the whole software development and deployment process is conducted.

Software development process models
As a software architect, it is really important for you to understand some of the common
development processes that are currently used in most enterprises. A software
development process defines how people in a team produce and deliver software. In
general, this process is connected with a software engineering theory, called software
development process models. From the time software development was defined as an
engineering process, many process models for developing software have been proposed.
Let's take a look at the ones that are currently common.

Reviewing traditional software development
process models
Some of the models introduced in the software engineering theory are already considered
traditional and quite obsolete. This book does not aim to cover all of them, but here, we will
give a brief explanation of the ones that are still used in some companies.

Understanding the waterfall model principles
This topic may appear strange in a software architecture book of 2019, but yes, you may
still find companies where the most traditional software process model still remains the
guideline for software development. This process executes all fundamental tasks in
sequence. Any software development project consists of the following steps:

Requirements specification
Software design
Programming
Tests and delivery

Understanding the Importance of Software Architecture Chapter 1

[15]

Let's look at a diagrammatic representation of this:

The waterfall development cycle (https://en.wikipedia.org/wiki/Waterfall_model)

Often, the use of waterfall models causes problems related to delays in the delivery of a
functional version of the software and user dissatisfaction due to the poor quality of the
final product.

Analyzing the incremental model
Incremental development is an approach that tries to overcome the biggest problem of the
waterfall model: the user can test the solution only at the end of the project. The idea of this
model is to give the users opportunities to interact with the solution as early as possible so
that they can give useful feedback, which will help during the development of the software.

Understanding the Importance of Software Architecture Chapter 1

[16]

However, also in this model, the limited number of increments and the
project's bureaucracy can causes problems in the interaction between developers and
customers:

The incremental development cycle (https://en.wikipedia.org/wiki/Incremental_build_model)

The incremental model was introduced as an alternative to the waterfall approach and it
mitigated the problems related to the lack of communication with the customer. For big
projects, fewer increments is still a problem. Besides, at the time the incremental approach
was used on a large scale, mainly at the end of the last century, many problems related to
project bureaucracy were reported, due to the large amount of documentation required.
This scenario caused the rise of a very important movement in the software development
industry—agile.

Understanding agile software development
process models
At the beginning of this century, developing software was considered one of the most
chaotic activities in engineering. The number of software projects that failed was incredibly
high and this fact proved the need for a different approach to deal with the flexibility
required by software development projects. So, in 2001, the Agile Manifesto was introduced
to the world and, from that time, various agile process models were proposed. Some of
them have survived up till now and are still very common.

Understanding the Importance of Software Architecture Chapter 1

[17]

Please check out this link for the Agile Manifesto: https:/ /
agilemanifesto. org/ .

One of the biggest differences between agile models and traditional models is the way
developers interact with the customer. The message that all agile models transmit is that
the faster you deliver software to the user, the better. This idea is sometimes confusing for
software developers who understand this as—let's try coding and that's all folks! However,
there is an important observation of the Agile Manifesto that many people do not read
when they start working with agile:

"That is, while there is value in the items on the right, we value the items on the left
more."

– Agile Manifesto, 2001

A software architect always needs to remember this. Agile processes do not mean a lack of
discipline. Moreover, when you use the agile process, you understand that there is no way
to have good software developed without discipline. On the other hand, as a software
architect, you need to understand that soft means flexibility. A software project that does
not deal with flexibility tends to get ruined over time.

Getting into the Scrum model
Scrum is an agile model for the management of software development projects. The model
comes from lean principles and is definitely one of the widely used approaches for
developing software nowadays.

Please check this link for more information about the Scrum
framework: https:/ /docplayer. net/78853722- Scrum- insights- for-
practitioners. html.

The basis of Scrum is that you have a flexible backlog of user needs that needs to be
discussed in each agile cycle, called a Sprint. The Sprint Goal is determined by the Scrum
Team, composed by the Product Owner, the Scrum Master, and the Development
Team. The Product Owner is responsible for prioritizing what will be delivered in that
sprint. During the sprint, this person will help the team to develop the required features.
The person who leads the team in the Scrum process is called Scrum Master. All of the
meetings and processes are conducted by this person.

https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html

Understanding the Importance of Software Architecture Chapter 1

[18]

It is important to notice that the Scrum process does not discuss how the software needs to
be implemented and which activities will be done. So, again, you have to remember the
software development basis, discussed at the beginning of this chapter. That means Scrum
needs to be implemented together with a process model. DevOps is one of the approaches
that may help you with the use of a software development process model together with
Scrum. We will discuss this later in this book, in Chapter 18, Understanding DevOps
Principles.

Enabling aspects to be gathered to design
high-quality software
Fantastic! You just started a software development project. Now, it is time to use all of your
knowledge to deliver the best software you can. Probably, your next question is—how do I
start? Well, as a software architect, you are going to be the one to answer it. And be sure
your answer is going to evolve in each software project you lead:

Defining a software development process is obviously the first thing to do. This1.
is generally done during the project planning process.
Besides, another very important thing to do is to gather the software2.
requirements. No matter which software development process you decide to use,
collecting real user needs is a part of a very difficult and continuous job. Of
course, there are techniques to help you with this. And be sure that gathering
requirements will help you to detect important aspects of software architecture.

These two activities are considered by most experts in software development as the key to
having success at the end of the development project journey. As a software architect, you
need to enable them to happen so that you will not have problems while guiding your
team.

Understanding the requirements gathering
process
There are different ways to represent the requirements. The most traditional approach
consists of you having to write a perfect specification before the beginning of the analysis.
Agile methods suggest that you need to write stories as soon as you are ready to start a
development cycle.

Understanding the Importance of Software Architecture Chapter 1

[19]

Remember: you do not write requirements for the user, you write them
for you and your team. The user just needs the job done!

The truth is that no matter the approach you decide to adopt in your projects, you will have
to follow some steps to gather requirements. This is what we call requirements
engineering.

Please check out this image of the requirements engineering process for more
information: https:/ /www. slideshare. net/ MohammedRomi/ ian-
sommerville- software- engineering- 9th- edition- ch- 4.

During this process, you need to be sure that the solution is feasible. In some cases, the
feasibility analysis is a part of the project planning process too, and by the time you start
the requirements elicitation, you will have the feasibility report already done. So, let's check
the other parts of this process, which will give you a lot of important information for the
software architecture.

Practicing the elicitation of user needs
There are a lot of ways to detect what exactly the user needs for a specific scenario. In
general, this can be done using techniques that will help you to understand what we call
user requirements. Here, you have a list of common techniques:

The power of imagination: If you are an expert in the area where you are
providing solutions, you may use your own imagination to find new user
requirements. Brainstorming can be conducted together so that a group of
experts can define user needs.
Questionnaires: This tool is useful for detecting common and important
requirements such as the number and kind of users, peak system usage, and the
commonly-used operating system (OS) and web browser.
Interviews: Interviewing the users helps you as an architect to detect user
requirements that perhaps questionnaires and your imagination will not cover.
Observation: There is no better way to understand the daily routine of a user
than being with them for a day.

As soon as you apply one or more of these techniques, you will have great and valuable
information, that is, the user's needs. At that moment, you will be able to analyze them and
detect the user and system requirements.

https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4

Understanding the Importance of Software Architecture Chapter 1

[20]

Remember: You can use these techniques in any situation where the real
need is to gather requirements, no matter if it is for the whole system or
for a single story.

Analyzing requirements
As soon as you detect user needs, it is time to begin the analysis of the requirements. At
that time, you can use techniques such as the following:

Prototyping: Prototypes are really good to clarify and to materialize the system
requirements. Today, we have many tools that can help you to mock interfaces.
A really nice open source tool is the Pencil Project. You will find further
information about it at https:/ /pencil. evolus. vn/ .
Use cases: The Unified Modeling Language (UML) use case model is an option
if you need detailed documentation. The model is composed of a detailed
specification and a diagram. Argo UML is another open source tool that can help
you out with this:

While you are analyzing the requirements of the system, you will be able to clarify exactly
what the users' needs are. This is really helpful when you are not sure about the real
problem you will solve and is pretty much better than just starting to program the
system. It is time that you will invest in having better code in the near future.

https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/

Understanding the Importance of Software Architecture Chapter 1

[21]

Writing the specifications
After you finish the analysis, it is important to register it as a specification. This document
can be written using traditional requirements or user stories, which are commonly used in
agile projects.

Requirements specification represents the technical contract between the user and the team.
There are some basic rules that this document needs to follow:

All stakeholders need to understand exactly what is written in the technical
contract, even if they are not technicians.
The document needs to be clear.
You need to classify each requirement.
Use a simple feature to represent each requirement.
Ambiguity and controversy need to be avoided.

Besides, some information can help the team to understand the context of the project they
are going to work on. Here, you have some tips about it:

Write an introductory chapter to give a full idea of the solution.
Create a glossary to make understanding easier.
Describe the kind of user the solution will cover.
Write functional and non-functional requirements.
Attach documents that can help the user to understand rules.

If you decide to write user stories, a good tip to follow is to write short sentences
representing each moment in the system with each user, as follows:

As <user>, I want <feature>, so that <reason>

This approach will explain exactly the reason why that feature will be implemented.
Besides that, you will have a good tool to later analyze the stories that are more critical and
prioritize the success of the project.

Reviewing the specification
Once you have the specification written, it is time to confirm with the stakeholders whether
they agree with it. This can be conducted in a review meeting or can be done online using
collaboration tools.

Understanding the Importance of Software Architecture Chapter 1

[22]

This is when you present all of the prototypes, documents, and information you have
gathered. As soon as everybody agrees with the specification, you are ready to start
studying the best way to implement this part of your project.

Using design thinking as a helpful tool
During your career as a software architect, you will find many projects where your
customer will bring you a solution ready for development. This is quite complicated once you
consider that as the correct solution and, most of the time, there will be architectural and
functional mistakes that will cause problems in the solution in the future. There are some
cases where the problem is worse—when the customer does not know the best solution for
the problem. Design thinking can help us with this.

Design thinking is a process that allows you to collect data directly from the users,
focusing on achieving the best results to solve a problem. During this process, the team will
have the opportunity to discover all personas that will interact with the system. This will
have a wonderful impact on the solution since you can develop the software by focusing on
the user experience, which can have a fantastic impact on the results.

The process is based on the following steps:

Empathize: In this step, you have to execute field research to discover the user's
concerns. This is where you find out about the users of the system. The process is
good for making you understand why and for whom you are developing
this software.
Define: Once you have the users' concerns, it is time to define their needs to
solve them.
Ideate: The needs will provide an opportunity to brainstorm some possible
solutions.
Prototype: These solutions can be developed as prototypes to confirm whether
they are good ones.
Test: Testing the prototypes will help you to understand the prototype that is
most connected to the real needs of the users.

What you have to understand is that design thinking can be a fantastic option to discover
real requirements. As a software architect, you are committed to helping your team to use
the correct tools at the correct time.

Understanding the Importance of Software Architecture Chapter 1

[23]

Understanding the principles of scalability,
robustness, security, and performance
Detecting requirements is a task that will let you understand the software you are going to
develop. However, as a software architect, you don't have to only pay attention to the
functional requirements for that system. Understanding the non-functional requirements is
really important and one of the primordial activities for a software architect.

We are going to discuss this more in Chapter 2, Functional and Nonfunctional Requirements,
but at this point, it is good to know that the principles of scalability, robustness, security,
and performance need to be applied for the requirements gathering process. Let's take a
look at each concept:

Scalability: As a software developer, globalization gives you the opportunity to
have your solution running all over the world. This is fantastic, but you, as a
software architect, need to design a solution that provides that possibility.
Scalability is the possibility for an application to increase its processing power as
soon as it is necessary, due to the number of resources that are being consumed.
Robustness: No matter how scalable your application is, if it is not able to
guarantee a stable and always-on solution, you are not going to get any peace.
Robustness is really important for critical solutions, where you do not have the
opportunity for maintenance at any time, due to the kind of problem that the
application solves. In many industries, the software cannot stop and lots of
routines run when nobody is available (overnight, holidays, and so on).
Designing a robust solution will give you the freedom to live while your
software is running well.
Security: This is another really important area that needs to be discussed after
the requirements stage. Everybody is worried about security and laws dealing
with it are being proposed in different parts of the world. You, as a software
architect, have to understand that security needs to be provided by design. This
is the only way to cope with all of the needs that the security community is
discussing right now.
Performance: The process of understanding the system you are going to develop
will probably give you a good idea of what your efforts will need to be to get the
desired performance from the system. This topic needs to be discussed with the
user to identify most of the bottlenecks you will face during the development
stage.

It is worth mentioning that all these concepts are requirements for this new generation of
solutions that the world needs. What will differentiate good software for incredible
software surely is the amount of work done to meet the project requirements.

Understanding the Importance of Software Architecture Chapter 1

[24]

Some cases where the requirements
gathering process impacted system results
All of the information discussed up to this point in the chapter is useful if you want to
design software following the principles of good engineering. This discussion is not related
to developing by using traditional or agile methods but focuses on building software
professionally or as an amateur.

Besides, it is good to know about some cases where the lack of activities you read about
caused some trouble for the software project. The following cases intend to describe what
went wrong and how the preceding techniques could have helped the development team to
solve the problems. In most cases, simple action could guarantee better communication
between the team and the customer and this easy communication flow could transform a
big problem into a real solution.

Case 1 – my website is too slow to open that
page!
Performance is one of the biggest problems that you as a software architect will live
through during your career. The reason why this aspect of any software is so problematic is
that we do not have infinite computational resources to solve problems. Besides, the cost of
computation is still high, especially if you are talking about software with a high number of
simultaneous users.

You cannot solve performance problems by writing requirements. However, you won't end
up in trouble if you write them correctly. The idea here is that requirements have to present
the desired performance of a system. A simple sentence, describing this, can help the entire
team that works on the project:

Non-functional requirement: Performance – any web page of this software will respond in
at least 2 seconds.

The preceding sentence just makes everybody (users, testers, developers, architects,
managers, and so on) sure that any web page has a target to achieve. This is a good start,
but it is not enough. With this, a great environment to both develop and deploy your
application is important. This is where .NET Core can help you a lot. Especially if you are
talking about web apps, ASP.NET Core is considered one of the fastest options to deliver
solutions today.

Understanding the Importance of Software Architecture Chapter 1

[25]

If you talk about performance, you, as a software architect, should consider the use of the
techniques listed in the following sections. It is good to mention that ASP.NET Core will
help you to use them easily, together with some Platform as a Service (PaaS) solutions
delivered by Microsoft Azure.

Understanding caching
Caching is a great technique to avoid queries that can consume time and, in general, give
the same result. For instance, if you are fetching the available car models in a database, the
number of cars in the database can increase but they will not change. Once you have an
application that constantly accesses car models, a good practice is to cache that information.

It is important to understand that a cache is stored in the backend and that cache is shared
by the whole application (in-memory caching). A single point of attention here is when you
are working on a scalable solution, you can configure a distributed cache to solve it using the
Azure platform. In fact, ASP.NET Core provides both of them, so you can decide on the one
that bests fits your needs.

Applying asynchronous programming
When you develop ASP.NET Core applications, you need to keep in mind that this app
needs to be designed for simultaneous access by many users. Asynchronous programming
lets you do this simply, giving you the keywords async and await.

The basic concept behind these keywords is that async enables any method to run in a
different thread from the one that calls it. On the other hand, await lets you synchronize
the call of an asynchronous method without blocking the thread that is calling it. This easy-
to-develop pattern will make your application run without performance bottlenecks and
better responsiveness. This book will cover more about this subject in Chapter 2, Functional
and Nonfunctional Requirements.

Dealing with object allocation
One very good tip to avoid a lack of performance is to understand how the Garbage
Collector works. The Garbage Collector is the engine that will free memory automatically
when you finish using it. There are some very important aspects of this topic, due to the
complexity that the GC has.

Understanding the Importance of Software Architecture Chapter 1

[26]

Some types of objects are not collected by the GC. The list includes any object that interacts
with I/O, such as files and streaming. If you do not correctly use the C# syntax to create and
destroy this kind of object, you will have memory leaks, which will deteriorate your
application performance.

The incorrect way of working with I/O objects:

System.IO.StreamWriter file = new System.IO.StreamWriter(@"C:\sample.txt");
file.WriteLine("Just writing a simple line");

The correct way of working with I/O objects:

using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\sample.txt"))
{
 file.WriteLine("Just writing a simple line");
}

Even though the preceding practice is mandatory for I/O objects, it is totally recommended
that you keep doing this in all disposable objects. This will help the GC and will keep your
application running with the right amount of memory.

Another important aspect that you need to know about is that the time spent by the GC to
collect objects that will interfere with the performance of your app. Because of this, avoid
allocating large objects. This can cause you trouble waiting for the GC to finish its task.

Getting better database access
One of the most common performance Achilles' heel is database access. The reason why
this is still a big problem is the lack of attention while writing queries or lambda
expressions to get information from the database. This book will cover Entity Framework
Core in Chapter 6, Interacting with Data in C# – Entity Framework Core, but it is important to
know what to choose, the correct data information to read from a database, and filtering
columns and lines is imperative for an application that wants to deliver performance.

The good thing is that best practices related to caching, asynchronous programming, and
object allocation fit completely in the environment of databases. It is only a matter of
choosing the correct pattern to get better-performance software.

Understanding the Importance of Software Architecture Chapter 1

[27]

Case 2 – the user's needs are not properly
implemented
The more technology is used in a wide variety of areas, the more difficult it is to deliver
exactly what the user needs. Maybe this sentence sounds weird to you, but you have to
understand that developers, in general, study to develop software, but they rarely study to
deliver the needs of a specific area. Of course, it is not easy to learn how to develop
software, but it is even more difficult to understand a need in a particular area. Software
development nowadays delivers software to all possible types of industries. The question
here is how can a developer, being a software architect or not, evolve enough to deliver software in
the area they are responsible for?

Gathering software requirements definitely will help you in this tough task. Moreover,
writing them will make you understand and organize the architecture of the system. There
are several ways to minimize the risks of implementing something different from what the
user really needs:

Prototyping the interface to achieve the understanding of the user interface faster
Designing the data flow to detect gaps between the system and the user
operation
Frequent meetings to be updated on the current needs and aligned to the
incremental deliveries

Again, as a software architect, you will have to define how the software will be
implemented. Most of the time, you are not going to be the one who programs it, but you
will always be the one responsible for this. For this reason, some techniques can be useful to
avoid the wrong implementation:

Requirements are reviewed with the developers to guarantee that they
understand what they need to develop
Code inspection to validate a predefined code standard
Meetings to eliminate impediments

Understanding the Importance of Software Architecture Chapter 1

[28]

Case 3 – the usability of the system does not
meet user needs
Usability is a key point for the success of a software project. The way the software is
presented and how it solves a problem can help the user to decide whether they want to
use it or not. As a software architect, you have to keep in mind that delivering software
with good usability is mandatory nowadays.

There are basic concepts of usability that this book does not intend to cover. But a good way
to meet the correct user needs when it comes to usability is by understanding who is going
to use the software. Design thinking can help you a lot with that, as was discussed earlier in
this chapter.

Understanding the user will help you to decide whether the software is going to run on a
web page, or a cell phone, or even in the background. This understanding is very important
to a software architect because the elements of a system will be better presented if
you correctly map who will use them.

On the other hand, if you do not care about that, you will just deliver software that works.
This can be good for a short time, but it will not exactly meet the real needs that made a
person ask you to architect software. You have to keep in mind the options and understand
that good software is designed to run on many platforms and devices.

You will be happy to know that C# is an incredible cross-platform option for that. So, you
can develop solutions to run your apps in Linux, Windows, Android, and iOS. You can run
your applications on big screens, tablets, cell phones, and even drones! You can embed
apps on boards for automation or in HoloLens for mixed reality. Software architects have to
be open-minded to design exactly what their users need.

Case study – detecting user needs
The case study of this book will take you on a journey of creating the software architecture
for a travel agency called World Wild Travel Club (WWTravelClub). The purpose of this
case study is to make you understand the theory explained in each chapter, plus to provide
the during the process of reading this book to develop an enterprise application with
Azure, Azure DevOps, C#, .NET Core, ASP.NET Core, and other technologies that will be
introduced in this book.

Understanding the Importance of Software Architecture Chapter 1

[29]

Book case study – introducing World Wild Travel
Club
World Wild Travel Club (WWTravelClub) is a travel agency that was created to change
the way people make decisions about their vacations and other trips around the world. To
do so, they are developing an online service where every detail of a trip experience will be
assisted by a club of experts specifically selected for each destination.

The concept of this platform is that you can be both a visitor and a destination expert at the
same time. The more you participate as an expert in a destination, the higher the points you
will score. These points can be exchanged for tickets that people buy online using the
platform.

The customer came with the following requirements for the platform. It is important to
know that, in general, customers do not bring the requirements ready for development.
That is why the requirements gathering process is so important:

Common user view:
Promotional packages on the home page
Search for packages
Details for each package:

Buy a package
Buy a package with a club of experts included:

Comment on your experience
Ask an expert
Evaluate an expert

Register as a common user
Destination expert view:

The same view as the common user view
Answer the questions asking for your destination expertise
Manage the points you scored answering questions:

Exchange points for tickets

Administrator view:
Manage packages
Manage common users
Manage destination experts

Understanding the Importance of Software Architecture Chapter 1

[30]

To finish this, it is important to note that WWTravelClub intends to have more than 100
Destination Experts per package and will offer around 1,000 different packages all over the
world.

Book case study – understanding user needs and
system requirements
To summarize the user needs of WWTravelClub, you can read the following user stories:

US_001: As a common user, I want to view promotional packages on the home
page, so that I can easily find my next vacation.
US_002: As a common user, I want to search for packages I cannot find on the
home page so that I can explore other trip opportunities.
US_003: As a common user, I want to see the details of a package, so that I can
decide which package to buy.
US_004: As a common user, I want to register myself, so that I can start buying
the package.
US_005: As a registered user, I want to buy a package, so that I can process the
payment.
US_006: As a registered user, I want to buy a package with a club of experts
included, so that I can have an exclusive trip experience.
US_007: As a registered user, I want to ask for an expert, so that I can get the best
of my trip.
US_008: As a registered user, I want to comment on my experience, so that I can
give feedback from my trip.
US_009: As a registered user, I want to evaluate an expert who helps me, so that I
can share with others how fantastic they were.
US_010: As a registered user, I want to register as a Destination Expert View, so
that I can help people who travel to my city.
US_011: As an expert user, I want to answer questions about my city, so that I
can score points to be exchanged in the future.
US_012: As an expert user, I want to exchange points for tickets, so that I can
travel around the world more.
US_013: As an administrator user, I want to manage packages, so that users can
have fantastic opportunities to travel.

Understanding the Importance of Software Architecture Chapter 1

[31]

US_014: As an administrator user, I want to manage registered users, so
that WWTravelClub can guarantee good service quality.
US_015: As an administrator user, I want to manage expert users, so that all of
the questions regarding our destinations are answered.
US_016: As an administrator user, I want to offer more than 1,000 packages
around the world, so that different countries can experience WWTravelClub
service.
US_017: As an administrator user, I want to have more than 1,000 users
simultaneously accessing the website, so that I can support all of the needs of my
users.
US_018: As a user, I want to access WWTravelClub in my native language, so
that I can easily understand the package offered.
US_019: As a user, I want to access WWTravelClub in the Chrome, Firefox, and
Edge web browsers, so that I can use the web browser of my preference.
US_020: As a user, I want to buy packages safely, so that only WWTravelClub
will have my credit card information.

Notice that while you start writing the stories, information related to non-functional
requirements such as security, environment, performance, and scalability can be included.

However, some system requirements may be omitted when you write user stories and need
to be included in the software specification. These requirements can be related to legal
aspects, hardware and software prerequisites, or even points of attention for the correct
system delivery. They need to be mapped and listed as well as user stories. The list
of WWTravelClub system requirements is presented in the following. Notice that
requirements are written in the future because the system does not exist yet:

SR_001: The system will use Microsoft Azure components to deliver the
scalability required.
SR_002: The system will respect General Data Protection Regulation
(GDPR) requirements.
SR_003: The system will run on the Windows, Linux, iOS, and Android
platforms.
SR_004: Any web page of this system will respond in at least 2 seconds.

Understanding the Importance of Software Architecture Chapter 1

[32]

Summary
In this chapter, you learned the purpose of a software architect in a software development
team. Also, this chapter covered the basics of software development process models and
the requirements gathering process. You also had the opportunity to learn about how to
create your Azure account, which will be used during the case study of this book, which
was presented to you in the previous section. Moreover, you even learned about functional
and non-functional requirements and how to create them using user stories. These
techniques will surely help you deliver a better software project.

In the next chapter, you will have the opportunity to understand how functional and non-
functional requirements are important for software architecture.

Questions
What is the expertise that a software architect needs to have?1.
How can Azure help a software architect?2.
How does a software architect decide the best software development3.
process model to use in a project?
How does a software architect contribute to gathering requirements?4.
What kind of requirements does a software architect need to check in a5.
requirement specification?
How does design thinking help a software architect in the process of gathering6.
requirements?
How do user stories help a software architect in the process of writing7.
requirements?
What are good techniques to develop very good performance software?8.
How does a software architect check whether a user requirement is correctly9.
implemented?

Understanding the Importance of Software Architecture Chapter 1

[33]

Further reading
Here, you have some books and links you may consider reading to gather more
information about this chapter:

https:// www. packtpub. com/ virtualization- and- cloud/ hands- azure-
developers

https:// azure. microsoft. com/ en-us/ overview/ what- is-azure/

https:// azure. microsoft. com/ en-us/ services/ devops/

https:// docs. microsoft. com/ en-us/ dotnet/ core/ about

https:// docs. microsoft. com/ en-us/ aspnet/ core/

https:// www. packtpub. com/ web- development/ hands- full- stack- web-
development- aspnet- core

https:// agilemanifesto. org/

https:// www. amazon. com/ Software- Engineering- 10th- Ian- Sommerville/ dp/
0133943038

https:// www. amazon. com/ Software- Engineering- Practitioners- Roger-
Pressman/ dp/ 0078022126/

https:// scrumguides. org/

https:// www. packtpub. com/ application- development/ professional-
scrummasters- handbook

https:// docs. microsoft. com/ en-us/ aspnet/ core/ performance/ performance-
best-practices

https:// www. microsoft. com/ en-us/ hololens

https:// en. wikipedia. org/ wiki/ Incremental_ build_ model

https:// en. wikipedia. org/ wiki/ Waterfall_ model

https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://scrumguides.org/
https://scrumguides.org/
https://scrumguides.org/
https://scrumguides.org/
https://scrumguides.org/
https://scrumguides.org/
https://scrumguides.org/
https://scrumguides.org/
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model

2
Functional and Nonfunctional

Requirements
Once you have gathered the system requirements, it is time to think about the impact they
have on the architectural design. Scalability, performance, multithreading, interoperability,
and other subjects need to be analyzed so that we can meet user needs.

The following topics will be covered in this chapter:

What is scalability and how does it interact with Azure and .NET Core?
Good tips for writing better code when it comes to performance improvement
Creating a safe and useful multithreading software
Software usability, that is, how to design effective user interfaces
.NET Core and interoperability

Functional and Nonfunctional Requirements Chapter 2

[35]

Technical requirements
The samples provided in this chapter will require Visual Studio 2019 Community Edition
or Visual Studio Code.

You can find the sample code for this chapter here: https:/ /github. com/
PacktPublishing/Hands- On- Software- Architecture- with- CSharp- 8/tree/ master/ ch02.

How does scalability interact with Azure and
.NET Core?
A short search on scalability returns a definition such as the ability of a system to keep working
well when there's an increase in demand. Once developers read this, many of them incorrectly
conclude that scalability only means add more hardware to keep things working without stopping
the app.

Scalability relies on technologies involving hardware solutions. However, as a software
architect, you have to be aware that good software will keep scalability in a sustainable
model, which means that a well-architected software can save a lot of money. Hence, it is
not just a matter of hardware but also a matter of overall software design.

In Chapter 1, Understanding the Importance of Software Architecture, while discussing
software performance, we proposed some good tips to overcome bad performance issues.
The same tips will help you with scalability too. The fewer resources we spend on each
process, the more users the application can handle.

It is worth knowing that Azure and .NET Core web apps can be configured to handle
scalability too. Let's check this out in the following subsections.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02

Functional and Nonfunctional Requirements Chapter 2

[36]

Creating a scalable web app in Azure
It is pretty simple to create a web app in Azure, ready for scaling. The reason why you have
to do so is to be able to maintain different amounts of users during different seasons. The
more users you have, the more hardware you will need. The following steps will show you
how to create a scalable web application in Azure:

As soon as you log in to your Azure account, you will be able to create a new1.
resource (web app, database, virtual machine, and so on), as you can see in the
following screenshot:

Functional and Nonfunctional Requirements Chapter 2

[37]

After that, you can select Web App. This tutorial will take you to the following2.
screen:

Functional and Nonfunctional Requirements Chapter 2

[38]

The required details are as follows:

App name: As you can see, this is the URL that your web app will assume after
its creation. The name is checked to ensure it is available.
Subscription: This is the account that will be charged for all application costs.
Resource Group: This is the collection of resources you can define to organize
policies and permissions. You may specify a new resource group name or add
the web app to a group specified during the definition of other resources.
OS: This is the operating system that will host the web app. Both Windows and
Linux may be used for ASP.NET Core projects.
Publish: This parameter indicates whether the web app will be delivered directly
or whether it is going to use Docker technology to publish content. Docker will
be discussed in more detail in Chapter 5, Applying a Microservice Architecture to
Your Enterprise Application.
App Service Plan/Location: This is where you define the hardware plan that's
used to handle the web app and the location of the servers. This choice defines
application scalability, performance, and costs.
Application Insights: This is a useful Azure toolset for monitoring and
troubleshooting web apps.

Applications may be scaled in two conceptually different ways:

Vertically (Scale up)
Horizontally (Scale out)

Functional and Nonfunctional Requirements Chapter 2

[39]

Both of them are available in the web app settings, as you can see in the following
screenshot:

Let's checkout the two types of scaling.

Vertical scaling (Scale up)
Scale up means changing the type of hardware that will sustain your application. In Azure,
you have the opportunity of starting with free-shared hardware and moving to an isolated
machine in a few clicks.

Functional and Nonfunctional Requirements Chapter 2

[40]

By selecting this option, you have the opportunity to select more powerful hardware
(machines with more CPUs, storage, and RAM). The following screenshot shows the user
interface for scaling up a web app:

Functional and Nonfunctional Requirements Chapter 2

[41]

Horizontal scaling (Scale out)
Scaling out means splitting all requests among more servers with the same capacity instead
of using more powerful machines. The load on all the servers is automatically balanced by
the Azure infrastructure. This solution is advised when the overall load may change
considerably in the future since horizontal scaling can be automatically adapted to the
current load. The following screenshot shows an automatic Scale out strategy defined by
two simple rules, which is triggered by CPU usage:

Functional and Nonfunctional Requirements Chapter 2

[42]

A complete description of all the available auto scale rules is beyond the purpose of this
book. However, they are quite self-explanatory and the Further reading section contains
links to the full documentation.

The Scale out feature is only available in paid service plans.

Creating a scalable web app with .NET Core
Among all the available frameworks for implementing web apps, ASP.NET Core ensures
good performance, together with low production and maintenance costs. ASP.NET Core
performance is comparable with the performance of Node.js, but production and
maintenance costs are lower because of the usage of C# (which is a strongly typed and
advanced pure object language) instead of JavaScript.

The steps that follow will guide you through the creation of an ASP.NET Core-based web
app. All the steps are quite simple, but some details require particular attention.

First of all, during the web app's creation, you can choose between .NET Core Framework
and .NET Framework. Pay attention, because only .NET Core can run on both Windows
and cheaper Linux servers, while classic .NET runs only on Windows servers. On the other
hand, with classic .NET, you will have access to a larger code base of legacy libraries that
include both Microsoft and third-party packages.

Nowadays, Microsoft recommends classic .NET, just in case the features you need are not
available in .NET Core, or even when you deploy your web app in an environment that
does not support .NET Core. In any other case, you should prefer .NET Core Framework
because it allows you to do the following:

Run your web app in Windows, Linux, or Docker containers
Design your solution with microservices
Have high performance and scalable systems

Functional and Nonfunctional Requirements Chapter 2

[43]

Containers and microservices will be covered in Chapter 5, Applying a Microservice
Architecture to Your Enterprise Application. There, you'll get a better understanding of the
advantages of these technologies. For now, it is enough to say that .NET Core and
microservices were designed for performance and scalability, which is why you should
prefer .NET Core in all of your new projects.

The following steps will show you how to create an ASP.NET Core web app in Visual
Studio 2019 with .NET Core 3.0:

Once you select ASP.NET Core Web Application, you will be directed to a1.
screen where you will be asked to set up the Project name,
Location, and Solution name:

After that, you will be able to select the .NET Core version to use. At the time of2.
writing, .NET Core 3.0 was still in its Preview 1 version.
Now that we are done with adding the basic details, you can connect your web3.
app project to your Azure account and have it published.

Functional and Nonfunctional Requirements Chapter 2

[44]

In the Solution Explorer, you have the option to Publish... if you right-4.
click anywhere in there:

After you select the Publish... menu item, you will be able to connect your Azure5.
account and then select the web app you wish to deploy:

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Transforming Customer Needs in Real-World Applications
	Chapter 1: Understanding the Importance of Software Architecture
	Technical requirements
	What is software architecture?
	Creating an Azure account

	Software development process models
	Reviewing traditional software development process models
	Understanding the waterfall model principles
	Analyzing the incremental model

	Understanding agile software development process models
	Getting into the Scrum model

	Enabling aspects to be gathered to design high-quality software
	Understanding the requirements gathering process
	Practicing the elicitation of user needs
	Analyzing requirements
	Writing the specifications
	Reviewing the specification

	Using design thinking as a helpful tool
	Understanding the principles of scalability, robustness, security, and performance

	Some cases where the requirements gathering process impacted system results
	Case 1 – my website is too slow to open that page!
	Understanding caching
	Applying asynchronous programming
	Dealing with object allocation
	Getting better database access

	Case 2 – the user's needs are not properly implemented
	Case 3 – the usability of the system does not meet user needs

	Case study – detecting user needs
	Book case study – introducing World Wild Travel Club
	Book case study – understanding user needs and system requirements

	Summary
	Questions
	Further reading

	Chapter 2: Functional and Nonfunctional Requirements
	Technical requirements
	How does scalability interact with Azure and .NET Core?
	Creating a scalable web app in Azure
	Vertical scaling (Scale up)
	Horizontal scaling (Scale out)

	Creating a scalable web app with .NET Core

