
1
WOW! eBook

www.wowebook.org

Build enterprise-ready scalable applications with architectural design patterns

Rhuan Rocha
João Purificação

Java EE 8 Design Patterns and Best Practices

BIRMINGHAM - MUMBAI

2
WOW! eBook

www.wowebook.org

Java EE 8 Design Patterns and Best Practices
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior
written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this
book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use
of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri
Content Development Editor: Akshada Iyer
Technical Editor: Mehul Singh
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jisha Chirayil
Production Coordinator: Shraddha Falebhai

First published: August 2018

Production reference: 1080818

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-062-1

www.packtpub.com

To my Aunt, Vanessa Rocha, for teaching me to have a calm look and observe the facts more
clearly. To my mother, Ivonete Rocha, for her sacrifices and power.
- Rhuan Rocha
To my two daughters, Carolina and Beatriz, who give me the energy to walk even further; to my
father, João Lobato, for his great wisdom and intelligence; and to my mother, Dinah, for her love
and affection.

- João Purificação

3
WOW! eBook

www.wowebook.org

http://www.packtpub.com

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

4
WOW! eBook

www.wowebook.org

http://www.PacktPub.com
http://www.packtpub.com

About the authors
Rhuan Rocha is from Brazil and has experience with development using the Java language and
Java EE. Currently, he works as senior Middleware consultant in a partnership between Red Hat
and FábricaDS, and he applies Red Hat solutions using Red Hat Middlewares. Furthermore, he
has 8 years, experience with Java development and Java EE development, developing enterprise
applications and government applications.

João Purificação is an electronic engineer from Brazil with a master's in systems engineering.
He started working with software development as a C and C ++ programmer. He has worked on
the analysis, development, and architecture of Java-based enterprise applications. As a
Java/JavaEE consultant, he has participated in the development and architecture of applications
for private and government companies. He currently works as a senior architect at Resource IT, a
company based in São Paulo.

5
WOW! eBook

www.wowebook.org

About the reviewer
Kamalmeet Singh got his first taste of programming at the age of 15, and he immediately fell in
love with it. After spending over 14 years in the IT Industry, Kamal has matured into an ace
developer and a technical architect. He is also the coauthor of a book on Design Patterns and
Best Practices in Java. The technologies he works with range from cloud computing, machine
learning, augmented reality, serverless applications, to microservices and so on.

6
WOW! eBook

www.wowebook.org

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an author for, or submit your own
idea.

7
WOW! eBook

www.wowebook.org

http://authors.packtpub.com

Table of Contents
Title Page Copyright
and Credits

Java EE 8 Design Patterns and Best Practices
Dedication
Packt Upsell

Why subscribe?
PacktPub.com

Contributors
About the authors
About the reviewer
Packt is searching for authors like you

Preface
Who this book is for
What this book covers
To get the most out of this book

Download the example code files
Download the color images
Conventions used

Get in touch
Reviews

1. Introduction to Design Patterns
Explaining design patterns

Explaining the Gang of Four design patterns
The catalog of Gang of Four design patterns

Understanding the advantages of design patterns
Understanding the basic design patterns of the Java world

Explaining Singleton
Explaining Abstract Factory
Explaining Facade
Explaining Iterator
Explaining Proxy

Explaining enterprise patterns
Defining the difference between design patterns and enterprise patterns
Summary

2. Presentation Patterns
Explaining the presentation tier
Explaining intercepting filter pattern
Implementing the intercepting filter pattern using Java EE 8

Implementing LogAccessFilter
Implementing LogBrowserFilter
Deciding filter mapping

Explaining the FrontController pattern
Implementing FrontController

8
WOW! eBook

www.wowebook.org

Implementing the commands The
application controller pattern

Implementing DownloadFrontController
Implementing DownloadApplicationController
Implementing commands
The difference between the application controller and front controller patterns

Summary
3. Business Patterns

Understanding the business tier
Explaining the Business Delegate pattern

Client tier, presentation tier, and business tier
Layers
Tiers

The classic Business Delegate pattern scenario
The benefits of the Business Delegate pattern

Business Delegate – obsolete or not Explaining
the Session Façade pattern

Benefits of Session Façade
Implementing the Session Façade pattern in JEE
The classic Session Façade pattern scenario

Implementing the Session Façade pattern
Explaining the business-object pattern

Applications with complex business rules
Motivation for using the business-object pattern
Benefits of business-object pattern usage

Implementing the business-object pattern Summary

4. Integration Patterns
Explaining the concept of the integration tier
Explaining the concept of the data-access object pattern
Implementing the data-access object pattern

Implementing the entity with JPA
Implementing DAO

Explaining the concept of the domain-store pattern
Implementing the domain-store pattern

Implementing the PersistenceManagerFactory class
Implementing the PersistenceManager class
Implementing the EmployeeStoreManager class
Implementing the StageManager interface
Implementing the TransactionFactory class
Implementing the Transaction class Implementing
the EmployeeBusiness class

Explaining the concept of the service-activator pattern
Java Message Service (JMS)
EJB asynchronous methods
Asynchronous events – producers and observers

Implementing the service-activator pattern
Implementing sending and receiving messages with JMS

9
WOW! eBook

www.wowebook.org

Implementing the EJB asynchronous methods
Implementing asynchronous events – producers and observers

Summary
5. Aspect-Oriented Programming and Design Patterns

Aspect-oriented programming
Compile-time versus run-time AOP
AOP in JEE scenario – the interceptor

A brief word about CDI and beans
The bean

Managed beans in CDI
Loose coupling
Interceptors in the JEE platform
EJB interceptor implementation

Intercepting method invocation
Interceptor class and multiple method interceptors
Intercepting life cycle callback events

CDI interceptor implementation
Decorator

The decorator pattern
The decorator in a JEE scenario
Decorator implementation

Summary
6. Reactive Patterns

Explaining the concept of an event in CDI
Implementing an event in CDI

Implementing the FileUploadResource class
Bean sent on the event
Qualifier to select the JpgHandler observer to react to an
event
Qualifier to select the PdfHandler observer to react to an
event
Qualifier to select the ZipHandler observer to react to an
event
The FIleUploadResource class

Implementing observers
Explaining the concept of an asynchronous EJB method

Difference between an asynchronous EJB method and an event in CDI
Implementing an asynchronous EJB method
Implementing EJBs

Implementing the FileUploadResource class
Calling an asynchronous EJB method to save a PDF
Calling an asynchronous EJB method to save a JPG Calling
an asynchronous EJB method to save a ZIP

Explaining the concept of an asynchronous REST service
Implementing an asynchronous REST service

Implementing the EJBs
Implementing the FileUploadResource class
Implementing the client API

10
WOW! eBook

www.wowebook.org

Summary
7. Microservice Patterns

Explaining microservices patterns
Inside a monolithic application

Difficulty in implementing new features and fixing bugs
Long application startup time
Inefficient continuous deployment
Low reliability
Difficulty using new frameworks and technologies

The scale cube
What microservices actually are

Microservices are not a silver bullet Explaining
how microservices architecture works

The application is decomposed into smaller components
Multitask teams
Product focus
Simpler and smarter processing
Decentralized governance of libraries and APIs Single
responsibility principle
Fault tolerance
Evolutionary systems
Decentralized data

Explaining when to use microservices architecture
How to decompose an application into microservices

Identifying microservices
Taking care of the process of extracting application modules that are
candidates for microservices
Establishing a hexagonal model for the application

Advantages and drawbacks of a microservices-based application
Microservices architecture patterns

Aggregator pattern
Proxy pattern
Chained pattern
Branch pattern
Asynchronous pattern

Implementing microservices
Summary

8. Cloud-Native Application Patterns
Explaining the concept of cloud-native applications
Explaining the goals of the cloud-native application
Explaining the cloud design patterns

Composite application (microservices)
Abstraction
Twelve-factor

Codebase
Dependencies
Config Backing
services

11
WOW! eBook

www.wowebook.org

Build, release, run
Processes
Port-binding
Concurrency
Disposability Dev/
prod parity Logs
Admin processes

The API Gateway
The service-registry pattern
Config server
The circuit-breaker pattern

The circuit-breaker mechanism
Summary

9. Security Patterns
Explaining the concept of security patterns
Explaining the concept of the single-sign-on pattern
Implementing the single-sign-on pattern

Implementing the AuthenticationResource class
Implementing the App1 and App2 classes

Explaining the authentication mechanism
Explaining basic authentication
Explaining form authentication
Explaining digest authentication
Explaining client authentication
Explaining mutual authentication
When to use the deployment descriptor, annotation, or programmatic
configuration

Implementing the authentication mechanism
Implementing the web.xml file
Implementing the HelloWorld class
Implementing the HelloWordServlet class

Explaining the authentication interceptor
Implementing the authentication interceptor

Implementing the CDI interceptor
Implementing the JAX-RS resource

Summary
10. Deployment Patterns

Explaining the concept of deployment patterns
Explaining the concept of canary deployment

Defining the canary servers
Deploying the application to canary servers
Testing the application and verifying whether it satisfies our criteria
Deploying the application to remaining servers

Explaining the concept of blue/green deployment
Defining the group of servers to receive the first deployment
Deploying the application to a group of servers
Deploying the application to the remaining server

12
WOW! eBook

www.wowebook.org

Explaining the concept of A/B testing
Defining a group of end users
Defining the servers to receive a new version
Deploying the new version
Evaluating the impact of a new version

Explaining the concept of continuous deployment
Summary

11. Operational Patterns
Explaining the concept of operational patterns
Explaining the concept of performance and scalability patterns

The cache-aside pattern
When to use the cache-aside pattern

The lifetime of cached data
Evicting data
Priming the cache
Consistency
Local (in-memory) caching

The CQRS pattern
When to use the CQRS pattern
The event sourcing pattern

Understanding the event of event sourcing
Promoting performance
Promoting decoupling
Promoting scalability
Promoting auditing

Explaining the index table pattern
The materialized view pattern

Rebuilding the materialized view
When to use the materialized view pattern

Explaining the sharding pattern
When to use the sharding pattern

Explaining the concept of management and monitoring patterns
The ambassador pattern

When to use the ambassador pattern
Explaining the health endpoint monitoring pattern

When to use the health endpoint monitoring pattern
Explaining the external configuration store pattern

When to use the external configuration store pattern
Summary

12. MicroProfile
Explaining the Eclipse MicroProfile project approach

Eclipse MicroProfile Config 1.3
Eclipse MicroProfile Fault Tolerance 1.1
Eclipse MicroProfile Health Check 1.0
Eclipse MicroProfile JWT authentication 1.1
Eclipse MicroProfile Metrics 1.1
Eclipse MicroProfile OpenAPI 1.0
Eclipse MicroProfile OpenTracing 1.1

13
WOW! eBook

www.wowebook.org

Eclipse MicroProfile REST Client 1.1
CDI 2.0
Common annotations 1.3
JAX-RS 2.1
JSON-B 1.0
JSON-P 1.1
Why should we use the MicroProfile
project?Community
Future work

Summary
Other Books You May Enjoy

Leave a review - let other readers know what you think

14
WOW! eBook

www.wowebook.org

Preface
Over time, the world of enterprise has invested more and more in technologies and applications
that optimize processes and help businesses increase their profits and improve services or
products. The enterprise environment has challenges that need to be faced to implement good
solutions, such as the high availability of services, the capacity to change when needed, the
capacity to scale services, and the capacity to process a large amount of data. With this, new
applications have been created to optimize processes and increase profits. The Java language and
Java EE are great tools for creating an application for the enterprise environment, because, Java
language is multiplatform, open source, widely tested, and has a strong community and a strong
ecosystem. Furthermore, the Java language has Java EE, which is, an umbrella of specifications
that permit us developer enterprise application without depending on vendors. The development
of enterprise application has some well-known problems that occur over and over. These
problems involve the integration of services, the high availability of applications, and resilience.

This book will explain the concepts of Java EE 8, what its tiers are, and how to develop
enterprise applications using Java EE 8 best practices. Furthermore, this book will demonstrate
how we can use design patterns and enterprise patterns with Java EE 8, and how we can optimize
our solutions using aspect-oriented programming, reactive programming, and microservices with
Java EE 8. Throughout this book, we learn about integration patterns, reactive patterns, security
patterns, deployment patterns, and operational patterns. At the end of this book, we will have an
overview of MicroProfile and how it can help us develop applications using microservices
architecture.

15
WOW! eBook

www.wowebook.org

Who this book is for
This book is for Java developers who want to learn to develop and deliver enterprise applications
using design patterns, enterprise patterns, and Java best practices. The reader needs to know the
Java language and the basic Java EE concepts.

16
WOW! eBook

www.wowebook.org

What this book covers
Chapter 1, Introduction to Design Patterns, introduces design patterns, looking at the reasons to
use them, how they differ from enterprise patterns, and how they behave in the real world.

Chapter 2, Presentation Patterns, covers each pattern by explaining the concept and showing
examples of implementations. After reading this chapter, we will know about these patterns and
will be able to implement them with best practices using Java EE 8.

Chapter 3, Business Patterns, explores definitions of the business delegate pattern, the session
façade pattern, and the business object pattern. Here, we will focus on reasons to use these design
patterns, the common approach to each of them, their interaction with some other patterns, their
evolution, and how they behave in the real world. We will also demonstrate some examples of
these patterns' implementations.

Chapter 4, Integration Patterns, explains some integration patterns and looks at how they work
on the integration tier of Java EE. After reading this chapter, you will be able to implement these
patterns and use them to solve problems. You will also be able to work on the integration tier, as
well as becoming familiar with the concepts associated with integration patterns.

Chapter 5, Aspect-Oriented Programming and Design Patterns, looks at the concept of aspect-
oriented programming (AOP), focusing on which situations AOP should be used in, as well as
how to achieve AOP with the use of CDI interceptors and decorators. Finally, we will also
address some examples of implementations. By the end of this chapter, you will be able to
identify a situation that requires aspect-oriented programming with the use of interceptors and
decorators. Furthermore, you will also be able to identify the best approach to implementing
these concepts.

Chapter 6, Reactive Patterns, focuses on reactive patterns, concepts, and implementations, and
how they can help us implement a better application. We will also cover reactive programming
concepts, focusing on how they can aid application development. After reading this chapter, you
will be able to use reactive patterns using Java EE 8 best practices.

Chapter 7, Microservice Patterns, showcases microservice patterns. We will also compare these
with the monolithic pattern, looking at what the advantages and drawbacks of a microservices-
based application, are as well as focusing on when to use microservices. Furthermore, we will
demonstrate how to switch from a traditional monolithic application to a microservice
application, while using implementation examples throughout. We will then look at the design
patterns used to compose microservices. After reading this chapter, you will be able to identify
the parts of an application's code that are eligible to be microservices, and you will also know
how to implement a microservice pattern-based application using Java EE8.

Chapter 8, Cloud-Native Application Patterns, outlines cloud-native application pattern
concepts. What a cloud-native application is and what goals can be achieved with a cloud-native
application will be covered, and we will look at both patterns already described in the previous
chapters and new patterns that have emerged to address cloud-based applications. After reading

17
WOW! eBook

www.wowebook.org

this chapter, the reader will be able to understand the concepts and patterns that characterize
cloud architecture.

Chapter 9, Security Patterns, discusses security pattern concepts and how these can help us
implement better security applications. We will also learn about the single sign-on pattern and
how this can help us provide a security application. In addition, we will learn about the
authentication mechanism and authentication interceptor, focusing on how to implement these
concepts. After reading this chapter, you will be able to create a security application and
implement it using Java EE 8.

Chapter 10, Deployment Patterns, features deployment patterns, why we use them, and how they
impact on the delivery of applications. We will also cover the concepts of canary deployment,
blue/green deployment, A/B deployment, and continuous deployment. After reading this chapter,
you will be familiar with the concepts of deployment patterns.

Chapter 11, Operational Patterns, dives into operational patterns, focusing on why we use them
and how they impact on application projects. We will then cover performance and scalability
patterns, as well as management and monitoring patterns. After reading this chapter, you will
have learned all about the concepts of operational patterns.

Chapter 12, MicroProfile, is an overview of the eclipse MicroProfile project, covering its goals
and the expectation of this project. Throughout this chapter, we will cover the real benefits of
using this project to develop our application and will then actually use it. After reading this
chapter, you will know about the Eclipse MicroProfile project and what the real benefits of
using this project in our application are. This chapter is only an overview and will not teach
readers how to implement applications using the MicroProfile project, and will not be an in-
depth chapter.

18
WOW! eBook

www.wowebook.org

To get the most out of this book
1. Before reading this book, readers need to know about the object-oriented concept, the Java

language, and the basic concepts of Java EE. In this book, we assume that the reader
already knows some specifications of the Java EE umbrella, such as EJB, JPA, and CDI,
among others.

2. To test the code of this book, you need an application server that supports Java EE 8, such
as GlassFish 5.0. Furthermore, you need to use an IDE such as IntelliJ, Eclipse, NetBeans,
or any other that supports the Java language.

19
WOW! eBook

www.wowebook.org

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest
version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

20
WOW! eBook

www.wowebook.org

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it
here: https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf

21
WOW! eBook

www.wowebook.org

https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "It is
also important to bear in mind that the @Electronic qualifier identifies the decorated object."

A block of code is set as follows:

public interface Engineering {

 List<String> getDisciplines ();

}

public class BasicEngineering implements Engineering {

 @Override

 public List<String> getDisciplines() {

 return Arrays.asList("d7", "d3");

 }

}

@Electronic

public class ElectronicEngineering extends BasicEngineering {

 ...

}

@Mechanical

public class MechanicalEngineering extends BasicEngineering {

 ...

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

@Loggable

@Interceptor

public class LoggedInterceptor implements Serializable {

 @AroundInvoke

 public Object logMethod (InvocationContext invocationContext) throws

 Exception{

 System.out.println("Entering method : "

+ invocationContext.getMethod().getName() + " "

+ invocationContext.getMethod().getDeclaringClass()

);

 return invocationContext.proceed();

 }

}

Any command-line input or output is written as follows:

creating bean.

intercepting post construct of bean.

post construct of bean

Bold: Indicates a new term, an important word, or words that you see onscreen. For example,
words in menus or dialog boxes appear in the text like this. Here is an example: "After the user
logs in, when they access Application 1, Application 2, or Application 3, they will not need to
log in again. "

Warnings or important notes appear like this.
Tips and tricks appear like this.

22
WOW! eBook

www.wowebook.org

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject of your
message. If you have questions about any aspect of this book, please email us at
questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report this
to us. Please visit www.packtpub.com/submit-errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would
be grateful if you would provide us with the location address or website name. Please contact us
at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and
you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

23
WOW! eBook

www.wowebook.org

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on the site
that you purchased it from? Potential readers can then see and use your unbiased opinion to make
purchase decisions, we at Packt can understand what you think about our products, and our
authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

24
WOW! eBook

www.wowebook.org

https://www.packtpub.com/

Introduction to Design Patterns
This chapter will introduce design patterns, looking at reasons to use them, how they differ from
enterprise patterns, and how they behave in the real world.

Since we assume that you are already familiar with the Java programming language and Java EE,
our goal is not to teach Java EE, but to demonstrate its most common design patterns. We will
also demonstrate examples of the implementation of design patterns using Java EE 8.
Furthermore, we will demonstrate the best way to implement design patterns and discuss the
benefits of using design patterns and enterprise patterns. If you do not know about design
patterns and enterprise patterns, then this book will be a great tool for learning about the concepts
and implementations of design patterns and enterprise patterns. If you already know about design
patterns and enterprise patterns, then this book will be a great point of reference to address
when implementing them. We'll cover the following topics in this chapter:

Understanding design patterns
Understanding the advantages of design patterns
Defining the basic design patterns of the Java world
Explaining enterprise patterns
Explaining the difference between design patterns and enterprise patterns

25
WOW! eBook

www.wowebook.org

Explaining design patterns
Design patterns are sets of solutions to common design problems that occur over and over in
development. They work as a solution template in which an abstract solution for a common
problem is described and the user then applies it, adapting it to their problem. In object-oriented
programming, the design pattern provides a way to design reusable classes and objects for a
specific problem as well as defining the relationship between objects and classes. In addition,
design patterns provide a common idiom among programming languages that allows architects
and software developers to communicate about a common and recurring problem regardless of
the programming language they are using. With this, we are able to identify a problem and its
solution by the name of the pattern and thinking about a solution by a model point of view in a
high abstraction level of language programming details.

The design patterns theme gained strength in 1994 after the Gang of Four (formed by Rich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides) wrote Design Patterns: Elements of
Reusable Object‐Oriented Software. Here, they described 23 design patterns that were later
known as GoF design patterns and are still used today.

26
WOW! eBook

www.wowebook.org

Explaining the Gang of Four design patterns
The Gang of Four (GoF) design patterns are 23 patterns that are classified as creational patterns,
structural patterns, and behavioral patterns. The creational patterns control the creation and
initialization of the object and class selection; the structural patterns define the relationship
between classes and objects, and the behavioral patterns control the communication and
interaction between objects. As well as this, the GoF design patterns have two types of scope
which define the focus of solutions. These scopes are object scope, which resolves problems
about object relations, and class scope, which resolves problems about class relations.

The object scope works with composition and the behavior changes are done in a runtime. Thus,
the object can have a dynamic behavior. The class scope works with inheritance and its behavior
is static-fixed at compile-time way. Then, to change the behavior of a class-scope pattern, we
need to change the class and recompile.

Patterns classified as class scope solve problems about the relationship between classes and are
static (fixed at compile time and cannot be changed once compiled). However, patterns classified
under the object scope solve problems about the relationship between objects and can be changed
at runtime.

The following diagram shows us the three classifications, as well as their patterns and scope:

In the preceding diagram, we can see the Factory Method pattern on the Class section and
the Abstract Factory pattern on the Object section. This occurs because the Factory Method
works with inheritance and the abstract method pattern works with composition. Then, the
Factory Method is static-fixed at compile time and cannot be changed after compilation.
However, the Abstract Factory is dynamic and can be changed at runtime.

27
WOW! eBook

www.wowebook.org

GoF design patterns are generally described using a graphical notation such as a use case
diagram, and an example of the implementation's code. The used notation must be able to
describe the classes and objects as well as the relationship between these classes and objects.

The pattern's name is an important part of the design patterns. This is because it is what the
developer uses to quickly identify the problem related to the pattern and to understand how the
pattern will solve it. The name of the pattern must be brief and refer to the problem and its
solution.

A design pattern is a great tool for designing software development, but its use needs to be
analyzed to determine if the design pattern is really required in order to solve the problem.

28
WOW! eBook

www.wowebook.org

The catalog of Gang of Four design patterns
Names of design patterns need be succinct, making them easy to identify. This is because design
patterns create a vocabulary for communicating between developers independent of
programming language, permitting developers to identify problems and solutions only by name
of a design pattern.

In design patterns, a catalog is a set of pattern names which are designed to permit a better
communication between developers.

The catalog of GoF's design patterns has 23 patterns, as shown in the preceding diagram. Here is
a description of these patterns:

Abstract Factory: This provides an interface to create objects without specifying their
concrete class, making it possible to decouple the business logic and the object creation
logic. With this, we can update the object creation logic in an easy way.
Adapter: This provides an interface that makes it possible for two incompatible interfaces
to work together. The adapter pattern works as a bridge between interfaces, adapting these
interfaces to work together. Furthermore, the adapter can adopt a class or objects.
Bridge: This pattern decouples an abstraction from its implementation, making them vary
independently. With this, we can modify the implementations without impacting the
abstractions and we can also modify the abstractions without impacting the
implementations. The class of abstraction hides implementations and its complexity.
Builder: This pattern separates the construction of a complex object from its
representation. With this, we can construct the objects of several representations using the
same process to that. Thus, we create a standard process of construction of objects that
have a complex process to construct.
Chain of responsibility: This pattern avoids coupling the sender and receiver of a
request creating some objects that have a chance to treat the requests. These objects create
a chain of receiver objects for a sender's request. Each object of this chain receives the
request and verifies whether or not it will treat this request.
Command: This pattern encapsulates a request for an object and creates a wrapper of
requests containing their information about the request. With this, we can do a request to
some object sending parameters without knowing about this operation. Furthermore, the
command permits us to execute an undo operation.
Composite: This pattern composes objects into a tree structure, which represents a part-
whole hierarchy. It permits you to treat a group of objects as a single object.
Decorator: This pattern permit extends a functionality of a class with flexibility, without
use subclass. It allows you to dynamically attach a new responsibility to an object.
Facade: This hides the complexity of the system, applying a unified interface to a set of
interfaces on a subsystem. This makes the subsystem easy to use.
Factory Method: This defines an interface for creating an object, and the subclass states
which class to initiate.
Flyweight: This uses sharing to efficiently support a large number of fine-grained objects.
This pattern reduces the number of objects created.

29
WOW! eBook

www.wowebook.org

Interpreter: This pattern represents language grammar and uses it to interpret them as
sentences of a language.
Iterator: This pattern provides a way to sequentially access the elements of a set of
objects without knowing its underlying representation.
Mediator: This reduces the complexity of communication by creating an object that
encapsulates all the communication and interaction between objects.
Memento: This pattern captures the object's internal states without hurting encapsulated
concepts, with this, the state of the object can be restored by the object. This pattern works
as a backup that maintains the current state of an object.
Observer: This defines a one-to-many dependency between objects. This means that if
one object is modified, all of its dependents are automatically notified and updated.
Prototype: This pattern permits us to create a new object using an object or instance as a
prototype. This pattern creates a copy of an object, creating a new object with the same
state of the object used as a prototype.
Proxy: This pattern creates a surrogate object (proxy object) for another object (original
object) in order to control the access to the original object.
State: This permits an object to alter its behavior when its internal state changes.
Singleton: This ensures that a class has only one instance in the entire project, and the
same instance of the object is returned every time the creation process is performed/run.
Strategy: This creates a family of algorithms, encapsulating each one and making them
interchangeable. This pattern permits you to change the algorithm at runtime.
Template method: This defines a skeleton for an algorithm in an operation, and the
subclass defines some steps to the algorithm. This pattern algorithm structure and the
subclass redefine some steps of this algorithm without modifying its structure.
Visitor: This represents an operation to be performed on an object structure. This pattern
permits us to add new operations to an element without modifying its class.

30
WOW! eBook

www.wowebook.org

	Who this book is for
	What this book covers

