

Hands-On Network
Programming with C

Learn socket programming in C and write secure and
optimized network code

Lewis Van Winkle

BIRMINGHAM - MUMBAI

Hands-On Network Programming with C
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Shriram Shekhar
Content Development Editor: Digvijay Bagul
Technical Editor: Abin Sebastian
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics Coordinator: Tom Scaria
Production Coordinator: Aparna Bhagat

First published: May 2019

Production reference: 1100519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-986-3

www.packtpub.com

http://www.packtpub.com

For Doogie

– Lewis Van Winkle

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Lewis Van Winkle is a software programming consultant, entrepreneur, and founder of a
successful IoT company. He has over 20 years of programming experience after publishing
his first successful software product at the age of 12. He has over 15 years of programming
experience with the C programming language on a variety of operating systems and
platforms. He is active in the open source community and has published several popular
open source programs and libraries—many of them in C. Today, Lewis spends much of his
time consulting, where he loves taking on difficult projects that other programmers have
given up on. He specializes in network systems, financial systems, machine learning, and
interoperation between different programming languages.

I would like to thank the publisher, Packt. This book wouldn't exist without their
encouragement and backing. I would also like to extend a special thank you to my
reviewer, Daniele Lacamera, for the careful work he carried out. This book improved
significantly as a result of his valuable feedback. I also want to acknowledge the patience
and support that my friends and family have shown over the last year while I've been
away writing.

About the reviewer
Daniele Lacamera is a software technologist and researcher with vast experience in
software design and development on embedded systems for different industries. He is
currently working as freelance software developer and trainer. He is a worldwide expert in
TCP/IP and transport protocol design and optimization, with more than 20 academic
publications on the topic. He supports free software by contributing to several projects,
including the Linux kernel, and is involved within a number of communities and
organizations that promote the use of free and open source software in the IoT.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Getting Started with Network
Programming
Chapter 1: Introducing Networks and Protocols 8

Technical requirements 8
The internet and C 9
OSI layer model 10
TCP/IP layer model 12
Data encapsulation 14
Internet Protocol 17

What is an address? 17
Domain names 20
Internet routing 21

Local networks and address translation 23
Subnetting and CIDR 25
Multicast, broadcast, and anycast 26

Port numbers 27
Clients and servers 28
Putting it together 28
What's your address? 29
Listing network adapters from C 32

Listing network adapters on Windows 32
Listing network adapters on Linux and macOS 37

Summary 39
Questions 39

Chapter 2: Getting to Grips with Socket APIs 40
Technical requirements 40
What are sockets? 41
Socket setup 42
Two types of sockets 44
Socket functions 46
Anatomy of a socket program 47

TCP program flow 48
UDP program flow 50

Berkeley sockets versus Winsock sockets 51
Header files 52

Table of Contents

[ii]

Socket data type 52
Invalid sockets 52
Closing sockets 53
Error handling 53

Our first program 53
A motivating example 54
Making it networked 55
Working with IPv6 64
Supporting both IPv4 and IPv6 66
Networking with inetd 68

Summary 68
Questions 69

Chapter 3: An In-Depth Overview of TCP Connections 70
Technical requirements 71
Multiplexing TCP connections 72

Polling non-blocking sockets 73
Forking and multithreading 73
The select() function 75

Synchronous multiplexing with select() 75
select() timeout 77
Iterating through an fd_set 78
select() on non-sockets 78

A TCP client 78
TCP client code 80

A TCP server 88
TCP server code 90
Building a chat room 96

Blocking on send() 98
TCP is a stream protocol 99
Summary 100
Questions 101

Chapter 4: Establishing UDP Connections 102
Technical requirements 102
How UDP sockets differ 104

UDP client methods 105
UDP server methods 106

A first UDP client/server 108
A simple UDP server 108
A simple UDP client 112

A UDP server 117
Summary 123
Questions 123

Table of Contents

[iii]

Chapter 5: Hostname Resolution and DNS 124
Technical requirements 124
How hostname resolution works 126

DNS record types 128
DNS security 130

Name/address translation functions 131
Using getaddrinfo() 131
Using getnameinfo() 134
Alternative functions 136
IP lookup example program 137

The DNS protocol 140
DNS message format 141
DNS message header format 141
Question format 143
Answer format 145
Endianness 146
A simple DNS query 146

A DNS query program 147
Printing a DNS message name 147
Printing a DNS message 149
Sending the query 155

Summary 163
Questions 163
Further reading 164

Section 2: An Overview of Application Layer
Protocols
Chapter 6: Building a Simple Web Client 166

Technical requirements 166
The HTTP protocol 168

HTTP request types 169
HTTP request format 170
HTTP response format 171
HTTP response codes 173
Response body length 174

What's in a URL 175
Parsing a URL 176

Implementing a web client 179
HTTP POST requests 190

Encoding form data 190
File uploads 192

Summary 193
Questions 193

Table of Contents

[iv]

Further reading 194

Chapter 7: Building a Simple Web Server 195
Technical requirements 195
The HTTP server 197

The server architecture 198
Content types 199

Returning Content-Type from a filename 200
Creating the server socket 201
Multiple connections buffering 202

get_client() 204
drop_client() 206
get_client_address() 207
wait_on_clients() 207
send_400() 208
send_404() 209
serve_resource() 209

The main loop 214
Security and robustness 220

Open source servers 223
Summary 223
Questions 224
Further reading 224

Chapter 8: Making Your Program Send Email 225
Technical requirements 225
Email servers 227

SMTP security 230
Finding an email server 230

SMTP dialog 234
The format of an email 236
A simple SMTP client program 237
Enhanced emails 248

Email file attachments 250
Spam-blocking pitfalls 251
Summary 253
Questions 253
Further reading 253

Section 3: Understanding Encrypted Protocols and
OpenSSL
Chapter 9: Loading Secure Web Pages with HTTPS and OpenSSL 255

Technical requirements 255
HTTPS overview 257

Table of Contents

[v]

Encryption basics 259
Symmetric ciphers 260
Asymmetric ciphers 261
How TLS uses ciphers 262

The TLS protocol 263
Certificates 264
Server name identification 265

OpenSSL 266
Encrypted sockets with OpenSSL 267
Certificates 270

A simple HTTPS client 272
Other examples 279
Summary 279
Questions 280
Further reading 280

Chapter 10: Implementing a Secure Web Server 281
Technical requirements 281
HTTPS and OpenSSL summary 284

Certificates 284
Self-signed certificates with OpenSSL 286

HTTPS server with OpenSSL 288
Time server example 290
A full HTTPS server 298

HTTPS server challenges 299
OpenSSL alternatives 300
Alternatives to TLS 300

Summary 301
Questions 302
Further reading 302

Chapter 11: Establishing SSH Connections with libssh 303
Technical requirements 303
The SSH protocol 304
libssh 305

Testing out libssh 305
Establishing a connection 306

SSH authentication 310
Server authentication 311
Client authentication 314

Executing a remote command 316
Downloading a file 319
Summary 324
Questions 324

Table of Contents

[vi]

Further reading 325

Section 4: Odds and Ends
Chapter 12: Network Monitoring and Security 327

Technical requirements 327
The purpose of network monitoring 328
Testing reachability 328

Checking a route 330
How traceroute works 331
Raw sockets 333

Checking local connections 334
Snooping on connections 336

Deep packet inspection 340
Capturing all network traffic 343

Network security 344
Application security and safety 345

Network-testing etiquette 346
Summary 346
Questions 347
Further reading 347

Chapter 13: Socket Programming Tips and Pitfalls 348
Technical requirements 348
Error handling 350

Obtaining error descriptions 351
TCP socket tips 354

Timeout on connect() 355
TCP flow control and avoiding deadlock 359
Congestion control 362
The Nagle algorithm 364
Delayed acknowledgment 366
Connection tear-down 369
The shutdown() function 371
Preventing address-in-use errors 373
Sending to a disconnected peer 375

Socket's local address 377
Multiplexing with a large number of sockets 378
Summary 379
Questions 380

Chapter 14: Web Programming for the Internet of Things 381
Technical requirements 381
What is the IoT? 382
Connectivity options 382

Table of Contents

[vii]

Wi-Fi 383
Ethernet 384
Cellular 385
Bluetooth 386
IEEE 802.15.4 WPANs 387

Hardware choices 388
Single-board computers 388
Microcontrollers 390
FPGAs 392

External transceivers and modems 392
IoT protocols 394
Firmware updates 395
Ethics of IoT 396

Privacy and data collection 397
End-of-life planning 397
Security 398

Summary 400
Questions 400

Appendix A: Answers to Questions 401
Chapter 1, Introducing Networks and Protocols 401
Chapter 2, Getting to Grips with Socket APIs 402
Chapter 3, An In-Depth Overview of TCP Connections 404
Chapter 4, Establishing UDP Connections 405
Chapter 5, Hostname Resolution and DNS 406
Chapter 6, Building a Simple Web Client 407
Chapter 7, Building a Simple Web Server 408
Chapter 8, Making Your Program Send Email 409
Chapter 9, Loading Secure Web Pages with HTTPS and OpenSSL 409
Chapter 10, Implementing a Secure Web Server 410
Chapter 11, Establishing SSH Connections with libssh 411
Chapter 12, Network Monitoring and Security 412
Chapter 13, Socket Programming Tips and Pitfalls 412
Chapter 14, Web Programming for the Internet of Things 414

Appendix B: Setting Up Your C Compiler on Windows 415
Installing MinGW GCC 415
Installing Git 422
Installing OpenSSL 423
Installing libssh 424
Alternatives 428

Appendix C: Setting Up Your C Compiler on Linux 429
Installing GCC 429

Table of Contents

[viii]

Installing Git 430
Installing OpenSSL 430
Installing libssh 430

Appendix D: Setting Up Your C Compiler on macOS 432
Installing Homebrew and the C compiler 432
Installing OpenSSL 434
Installing libssh 436

Appendix E: Example Programs 438
Code license 438
Code included with this book 439

Chapter 1 – Introducing Networks and Protocols 439
Chapter 2 – Getting to Grips with Socket APIs 439
Chapter 3 – An In-Depth Overview of TCP Connections 439
Chapter 4 – Establishing UDP Connections 440
Chapter 5 – Hostname Resolution and DNS 440
Chapter 6 – Building a Simple Web Client 440
Chapter 7 – Building a Simple Web Server 441
Chapter 8 – Making Your Program Send Email 441
Chapter 9 – Loading Secure Web Pages with HTTPS and OpenSSL 441
Chapter 10 – Implementing a Secure Web Server 441
Chapter 11 – Establishing SSH Connections with libssh 442
Chapter 12 – Network Monitoring and Security 442
Chapter 13 – Socket Programming Tips and Pitfalls 442
Chapter 14 – Web Programming for the Internet of Things 443

Other Book You May Enjoy 444

Index 446

Preface
Packt first contacted me about writing this book nearly a year ago. It's been a long journey,
harder than I anticipated at times, and I've learned a lot. The book you hold now is the
culmination of many long days, and I'm proud to finally present it.

I think C is a beautiful programming language. No other language in everyday use gets you
as close to the machine as C does. I've used C to program 8-bit microcontrollers with only
16 bytes of RAM, just the same as I've used it to program modern desktops with multi-core,
multi-GHz processors. It's truly remarkable that C works efficiently in both contexts.

Network programming is a fun topic, but it's also a very deep one; a lot is going on at many
levels. Some programming languages hide these abstractions. In the Python programming
language, for example, you can download an entire web page using only one line of code.
This isn't the case in C! In C, if you want to download a web page, you have to know how
everything works. You need to know sockets, you need to know Transfer Control Protocol
(TCP), and you need to know HTTP. In C network programming, nothing is hidden.

C is a great language to learn network programming in. This is not only because we get to
see all the details, but also because the popular operating systems all use kernels written in
C. No other language gives you the same first-class access as C does. In C, everything is
under your control – you can lay out your data structures exactly how you want, manage
memory precisely as you please, and even shoot yourself in the foot just the way you want.

When I first began writing this book, I surveyed other resources related to learning network
programming with C. I found much misinformation – not only on the web, but even in
print. There is a lot of C networking code that is done wrong. Internet tutorials about C
sockets often use deprecated functions and ignore memory safety completely. When it
comes to network programming, you can't take the it works so it's good enough programming-
by-coincidence approach. You have to use reasoning.

In this book, I take care to approach network programming in a modern and safe way. The
example programs are carefully designed to work with both IPv4 and IPv6, and they are all
written in a portable, operating system-independent way, whenever possible. Wherever
there is an opportunity for memory errors, I try to take notice and point out these concerns.
Security is too often left as an afterthought. I believe security is important, and it should be
planned in the system from the beginning. Therefore, in addition to teaching network
basics, this book spends a lot of time working with secure protocols, such as TLS.

I hope you enjoy reading this book as much as I enjoyed writing it.

Preface

[2]

Who this book is for
This book is for the C or C++ programmer who wants to add networking features to their
software. It is also designed for the student or professional who simply wants to learn
about network programming and common network protocols.

It is assumed that the reader already has some familiarity with the C programming
language. This includes a basic proficiency with pointers, basic data structures, and manual
memory management.

What this book covers
Chapter 1, Introducing Networks and Protocols, introduces the important concepts related to
networking. This chapter includes example programs to determine your IP address
pragmatically.

Chapter 2, Getting to Grips with Socket APIs, introduces socket programming APIs and has
you build your first networked program—a tiny web server.

Chapter 3, An In-Depth Overview of TCP Connections, focuses on programming TCP sockets.
In this chapter, example programs are developed for both the client and server sides.

Chapter 4, Establishing UDP Connections, covers programming with User Datagram
Protocol (UDP) sockets.

Chapter 5, Hostname Resolution and DNS, explains how hostnames are translated into IP
addresses. In this chapter, we build an example program to perform manual DNS query
lookups using UDP.

Chapter 6, Building a Simple Web Client, introduces HTTP—the protocol that powers
websites. We dive right in and build an HTTP client in C.

Chapter 7, Building a Simple Web Server, describes how to construct a fully functional web
server in C. This program is able to serve a static website to any modern web browser.

Chapter 8, Making Your Program Send Email, describes Simple Mail Transfer Protocol
(SMTP)—the protocol that is powering email. In this chapter, we develop a program that
can send email over the internet.

Preface

[3]

Chapter 9, Loading Secure Web Pages with HTTPS and OpenSSL, explores TLS—the protocol
that secures web pages. In this chapter, we develop an HTTPS client that is capable of
downloading web pages securely.

Chapter 10, Implementing a Secure Web Server, continues on the security theme and explores
the construction of a secure HTTPS web server.

Chapter 11, Establishing SSH Connections with libssh, continues with the secure protocol
theme. The use of Secure Shell (SSH) is covered to connect to a remote server, execute
commands, and download files securely.

Chapter 12, Network Monitoring and Security, discusses the tools and techniques used to test
network functionality, troubleshoot problems, and eavesdrop on insecure communication
protocols.

Chapter 13, Socket Programming Tips and Pitfalls, goes into detail about TCP and addresses
many important edge cases that appear in socket programming. The techniques covered are
invaluable for creating robust network programs.

Chapter 14, Web Programming for the Internet of Things, gives an overview of the design and
programming for Internet of Things (IoT) applications.

Appendix A, Answers to Questions, provides answers to the comprehension questions given
at the end of each chapter.

Appendix B, Setting Up Your C Compiler on Windows, gives instructions for setting up a
development environment on Windows that is needed for compiling all of the example
programs in this book.

Appendix C, Setting Up Your C Compiler on Linux, provides the setup instructions for
preparing your Linux computer to be capable of compiling all of the example programs in
this book.

Appendix D, Setting Up Your C Compiler on macOS, gives step-by-step instructions for
configuring your macOS system to be capable of compiling all of the example programs in
this book.

Appendix E, Example Programs, lists each example program, by chapter, included in this
book's code repository.

Preface

[4]

To get the most out of this book
The reader is expected to be proficient in the C programming language. This includes a
familiarity with memory management, the use of pointers, and basic data structures.

A Windows, Linux, or macOS development machine is recommended; you can refer to the
appendices for setup instructions.

This book takes a hands-on approach to learning and includes 44 example programs.
Working through these examples as you read the book will help enforce the concepts.

The code for this book is released under the MIT open source license. The reader is
encouraged to use, modify, improve, and even publish their changes to these example
programs.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

The code bundle for the book is also publicly hosted on GitHub at https://github.com/
codeplea/hands-on-network-programming-with-c. In case there's an update to the code, it
will be updated on that GitHub repository. Each chapter that introduces example programs
begins with the commands needed to download the book's code.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/files/
downloads/9781789349863_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, variable names, function names, directory
names, filenames, file extensions, pathnames, URLs, and user input. Here is an example:
"Use the select() function to wait for network data."

http://www.packt.com
http://www.packt.com/support
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
https://github.com/codeplea/hands-on-network-programming-with-c
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349863_ColorImages.pdf

Preface

[5]

A block of code is set as follows:

/* example program */

#include <stdio.h>
int main() {
 printf("Hello World!\n");
 return 0;
}

Any command-line input or output is written as follows:

gcc hello.c -o hello
./hello

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

[6]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
Section 1 - Getting Started with

Network Programming
This section will get the reader up and running with the basics of networking, the relevant
network protocols, and basic socket programming.

The following chapters are in this section:

Chapter 1, An Introduction to Networks and Protocols

Chapter 2, Getting to Grips with Socket APIs

Chapter 3, An In-Depth Overview of TCP Connections

Chapter 4, Establishing UDP Connections

Chapter 5, Hostname Resolution and DNS

1
Introducing Networks and

Protocols
In this chapter, we will review the fundamentals of computer networking. We'll look at
abstract models that attempt to explain the main concerns of networking, and we'll explain
the operation of the primary network protocol, the Internet Protocol. We'll look at address
families and end with writing programs to list your computer's local IP addresses.

The following topics are covered in this chapter:

Network programming and C
OSI layer model
TCP/IP reference model
The Internet Protocol
IPv4 addresses and IPv6 addresses
Domain names
Internet protocol routing
Network address translation
The client-server paradigm
Listing your IP addresses programmatically from C

Technical requirements
Most of this chapter focuses on theory and concepts. However, we do introduce some
sample programs near the end. To compile these programs, you will need a good C
compiler. We recommend MinGW on Windows and GCC on Linux and macOS. See
Appendix B, Setting Up Your C Compiler On Windows, Appendix C, Setting Up Your C
Compiler On Linux, and Appendix D, Setting Up Your C Compiler On macOS, for compiler
setup.

Introducing Networks and Protocols Chapter 1

[9]

The code for this book can be found at: https://github.com/codeplea/Hands-On-Network-
Programming-with-C.

From the command line, you can download the code for this chapter with the following
command:

git clone https://github.com/codeplea/Hands-On-Network-Programming-with-C
cd Hands-On-Network-Programming-with-C/chap01

On Windows, using MinGW, you can use the following command to compile and run code:

gcc win_list.c -o win_list.exe -liphlpapi -lws2_32
win_list

On Linux and macOS, you can use the following command:

gcc unix_list.c -o unix_list
./unix_list

The internet and C
Today, the internet needs no introduction. Certainly, millions of desktops, laptops, routers,
and servers are connected to the internet and have been for decades. However, billions of
additional devices are now connected as well—mobile phones, tablets, gaming systems,
vehicles, refrigerators, television sets, industrial machinery, surveillance systems, doorbells,
and even light bulbs. The new Internet of Things (IoT) trend has people rushing to connect
even more unlikely devices every day.

Over 20 billion devices are estimated to be connected to the internet now. These devices use
a wide variety of hardware. They connect over an Ethernet connection, Wi-Fi, cellular, a
phone line, fiber optics, and other media, but they likely have one thing in common; they
likely use C.

The use of the C programming language is ubiquitous. Almost every network stack is
programmed in C. This is true for Windows, Linux, and macOS. If your mobile phone uses
Android or iOS, then even though the apps for these were programmed in a different
language (Java and Objective C), the kernel and networking code was written in C. It is
very likely that the network routers that your internet data goes through are programmed
in C. Even if the user interface and higher-level functions of your modem or router are
programmed in another language, the networking drivers are still probably implemented
in C.

https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C
https://github.com/codeplea/Hands-On-Network-Programming-with-C

Introducing Networks and Protocols Chapter 1

[10]

Networking encompasses concerns at many different abstraction levels. The concerns your
web browser has with formatting a web page are much different than the concerns your
router has with forwarding network packets. For this reason, it is useful to have a
theoretical model that helps us to understand communications at these different levels of
abstraction. Let's look at these models now.

OSI layer model
It's clear that if all of the disparate devices composing the internet are going to
communicate seamlessly, there must be agreed-upon standards that define their
communications. These standards are called protocols. Protocols define everything from
the voltage levels on an Ethernet cable to how a JPEG image is compressed on a web page.
It's clear that, when we talk about the voltage on an Ethernet cable, we are at a much
different level of abstraction compared to talking about the JPEG image format. If you're
programming a website, you don't want to think about Ethernet cables or Wi-Fi
frequencies. Likewise, if you're programming an internet router, you don't want to have to
worry about how JPEG images are compressed. For this reason, we break the problem
down into many smaller pieces.

One common method of breaking down the problem is to place levels of concern into
layers. Each layer then provides services for the layer on top of it, and each upper layer can
rely on the layers underneath it without concern for how they work.

The most popular layer system for networking is called the Open Systems Interconnection
model (OSI model). It was standardized in 1977 and is published as ISO 7498. It has seven
layers:

Introducing Networks and Protocols Chapter 1

[11]

Let's understand these layers one by one:

Physical (1): This is the level of physical communication in the real world. At
this level, we have specifications for things such as the voltage levels on an
Ethernet cable, what each pin on a connector is for, the radio frequency of Wi-Fi,
and the light flashes over an optic fiber.
Data Link (2): This level builds on the physical layer. It deals with protocols for
directly communicating between two nodes. It defines how a direct message
between nodes starts and ends (framing), error detection and correction, and
flow control.
Network layer (3): The network layer provides the methods to transmit data
sequences (called packets) between nodes in different networks. It provides
methods to route packets from one node to another (without a direct physical
connection) by transferring through many intermediate nodes. This is the layer
that the Internet Protocol is defined on, which we will go into in some depth
later.
Transport layer (4): At this layer, we have methods to reliably deliver variable
length data between hosts. These methods deal with splitting up data,
recombining it, ensuring data arrives in order, and so on. The Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP) are commonly said
to exist on this layer.
Session layer (5): This layer builds on the transport layer by adding methods to
establish, checkpoint, suspend, resume, and terminate dialogs.
Presentation layer (6): This is the lowest layer at which data structure and
presentation for an application are defined. Concerns such as data encoding,
serialization, and encryption are handled here.
Application layer (7): The applications that the user interfaces with (for example,
web browsers and email clients) exist here. These applications make use of the
services provided by the six lower layers.

In the OSI model, an application, such as a web browser, exists in the application
layer (layer 7). A protocol from this layer, such as HTTP used to transmit web pages,
doesn't have to concern itself with how the data is being transmitted. It can rely on services
provided by the layer underneath it to effectively transmit data. This is illustrated in the
following diagram:

Introducing Networks and Protocols Chapter 1

[12]

It should be noted that chunks of data are often referred to by different names depending
on the OSI layer they're on. A data unit on layer 2 is called a frame, since layer 2 is
responsible for framing messages. A data unit on layer 3 is referred to as a packet, while a
data unit on layer 4 is a segment if it is part of a TCP connection or a datagram if it is a UDP
message.

In this book, we often use the term packet as a generic term to refer to a data unit on any
layer. However, segment will only be used in the context of a TCP connection, and
datagram will only refer to UDP datagrams.

As we will see in the next section, the OSI model doesn't fit precisely with the common
protocols in use today. However, it is still a handy model to explain networking concerns,
and it is still in widespread use for that purpose today.

TCP/IP layer model
The TCP/IP protocol suite is the most common network communication model in use
today. The TCP/IP reference model differs a bit from the OSI model, as it has only four
layers instead of seven.

Introducing Networks and Protocols Chapter 1

[13]

The following diagram illustrates how the four layers of the TCP/IP model line up to the
seven layers of the OSI model:

Notably, the TCP/IP model doesn't match up exactly with the layers in the OSI model.
That's OK. In both models, the same functions are performed; they are just divided
differently.

The TCP/IP reference model was developed after the TCP/IP protocol was already in
common use. It differs from the OSI model by subscribing a less rigid, although still
hierarchical, model. For this reason, the OSI model is sometimes better for understanding
and reasoning about networking concerns, but the TCP/IP model reflects a more realistic
view of how networking is commonly implemented today.

The four layers of the TCP/IP model are as follows:

Network Access layer (1): On this layer, physical connections and data framing
happen. Sending an Ethernet or Wi-Fi packet are examples of layer 1 concerns.
Internet layer (2): This layer deals with the concerns of addressing packets and
routing them over multiple interconnection networks. It's at this layer that an IP
address is defined.
Host-to-Host layer (3): The host-to-host layer provides two protocols, TCP and
UDP, which we will discuss in the next few chapters. These protocols address
concerns such as data order, data segmentation, network congestion, and error
correction.
Process/Application layer (4): The process/application layer is where protocols
such as HTTP, SMTP, and FTP are implemented. Most of the programs that
feature in this book could be considered to take place on this layer while
consuming functionality provided by our operating system's implementation of
the lower layers.

Introducing Networks and Protocols Chapter 1

[14]

Regardless of your chosen abstraction model, real-world protocols do work at many levels.
Lower levels are responsible for handling data for the higher levels. These lower-level data
structures must, therefore, encapsulate data from the higher levels. Let's look at
encapsulating data now.

Data encapsulation
The advantage of these abstractions is that, when programming an application, we only
need to consider the highest-level protocol. For example, a web browser needs only to
implement the protocols dealing specifically with websites—HTTP, HTML, CSS, and so on.
It does not need to bother with implementing TCP/IP, and it certainly doesn't have to
understand how an Ethernet or Wi-Fi packet is encoded. It can rely on ready-made
implementations of the lower layers for these tasks. These implementations are provided by
the operating system (for example, Windows, Linux, and macOS).

When communicating over a network, data must be processed down through the layers at
the sender and up again through the layers at the receiver. For example, if we have a web
server, Host A, which is transmitting a web page to the receiver, Host B, it may look like
this:

Introducing Networks and Protocols Chapter 1

[15]

The web page contains a few paragraphs of text, but the web server doesn't only send the
text by itself. For the text to be rendered correctly, it must be encoded in an HTML
structure:

In some cases, the text is already preformatted into HTML and saved that way but, in this
example, we are considering a web application that dynamically generates the HTML,
which is the most common paradigm for dynamic web pages. As the text cannot be
transmitted directly, neither can the HTML. It instead must be transmitted as part of an
HTTP response. The web server does this by applying the appropriate HTTP response
header to the HTML:

The HTTP is transmitted as part of a TCP session. This isn't done explicitly by the web
server, but is taken care of by the operating system's TCP/IP stack:

Introducing Networks and Protocols Chapter 1

[16]

The TCP packet is routed by an IP packet:

This is transmitted over the wire in an Ethernet packet (or another protocol):

Luckily for us, the lower-level concerns are handled automatically when we use the socket
APIs for network programming. It is still useful to know what happens behind the scenes.
Without this knowledge, dealing with failures or optimizing for performance is difficult if
not impossible.

With some of the theory out of the way, let's dive into the actual protocols powering
modern networking.

Introducing Networks and Protocols Chapter 1

[17]

Internet Protocol
Twenty years ago, there were many competing networking protocols. Today, one protocol
is overwhelmingly common—the Internet Protocol. It comes in two versions—IPv4 and
IPv6. IPv4 is completely ubiquitous and deployed everywhere. If you're deploying network
code today, you must support IPv4 or risk that a significant portion of your users won't be
able to connect.

IPv4 uses 32-bit addresses, which limits it to addressing no more than 232 or 4,294,967,296
systems. However, these 4.3 billion addresses were not initially assigned efficiently, and
now many Internet Service Providers (ISPs) are forced to ration IPv4 addresses.

IPv6 was designed to replace IPv4 and has been standardized by the Internet Engineering
Task Force (IETF) since 1998. It uses a 128-bit address, which allows it to address a
theoretical 2128 = 340,282,366,920,938,463,463,374,607,431,768,211,456, or about a 3.4 x 1038

addresses.

Today, every major desktop and smartphone operating system supports both IPv4 and
IPv6 in what is called a dual-stack configuration. However, many applications, servers,
and networks are still only configured to use IPv4. From a practical standpoint, this means
that you need to support IPv4 in order to access much of the internet. However, you should
also support IPv6 to be future-proof and to help the world to transition away from IPv4.

What is an address?
All Internet Protocol traffic routes to an address. This is similar to how phone calls must be
dialed to phone numbers. IPv4 addresses are 32 bits long. They are commonly divided into
four 8-bit sections. Each section is displayed as a decimal number between 0 and 255
inclusive and is delineated by a period.

Here are some examples of IPv4 addresses:

0.0.0.0

127.0.0.1

10.0.0.0

172.16.0.5

192.168.0.1

192.168.50.1

255.255.255.255

Introducing Networks and Protocols Chapter 1

[18]

A special address, called the loopback address, is reserved at 127.0.0.1. This address
essentially means establish a connection to myself. Operating systems short-circuit this
address so that packets to it never enter the network but instead stay local on the
originating system.

IPv4 reserves some address ranges for private use. If you're using IPv4 through a
router/NAT, then you are likely using an IP address in one of these ranges. These reserved
private ranges are as follows:

10.0.0.0 to 10.255.255.255
172.16.0.0 to 172.31.255.255
192.168.0.0 to 192.168.255.255

The concept of IP address ranges is a useful one that comes up many times in networking.
It's probably not surprising then that there is a shorthand notation for writing them. Using
Classless Inter-Domain Routing (CIDR) notation, we can write the three previous address
ranges as follows:

10.0.0.0/8

172.16.0.0/12

192.168.0.0/16

CIDR notation works by specifying the number of bits that are fixed. For
example, 10.0.0.0/8 specifies that the first eight bits of the 10.0.0.0 address are fixed,
the first eight bits being just the first 10. part; the remaining 0.0.0 part of the address can
be anything and still be on the 10.0.0.0/8 block. Therefore, 10.0.0.0/8 encompasses
10.0.0.0 through 10.255.255.255.

IPv6 addresses are 128 bits long. They are written as eight groups of four hexadecimal
characters delineated by colons. A hexadecimal character can be from 0-9 or from a-f. Here
are some examples of IPv6 addresses:

0000:0000:0000:0000:0000:0000:0000:0001

2001:0db8:0000:0000:0000:ff00:0042:8329

fe80:0000:0000:0000:75f4:ac69:5fa7:67f9

ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff

Note that the standard is to use lowercase letters in IPv6 addresses. This is in contrast to
many other uses of hexadecimal in computers.

Introducing Networks and Protocols Chapter 1

[19]

There are a couple of rules for shortening IPv6 addresses to make them easier. Rule 1
allows for the leading zeros in each section to be omitted (for example, 0db8 = db8). Rule 2
allows for consecutive sections of zeros to be replaced with a double colon (::). Rule 2 may
only be used once in each address; otherwise, the address would be ambiguous.

Applying both rules, the preceding addresses can be shortened as follows:

::1

2001:db8::ff00:42:8329

fe80::75f4:ac69:5fa7:67f9

ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff

Like IPv4, IPv6 also has a loopback address. It is ::1.

Dual-stack implementations also recognize a special class of IPv6 address that map directly
to an IPv4 address. These reserved addresses start with 80 zero bits, and then by 16 one
bits, followed by the 32-bit IPv4 address. Using CIDR notation, this block of address is
::ffff:0:0/96.

These mapped addresses are commonly written with the first 96 bits in IPv6 format
followed by the remaining 32 bits in IPv4 format. Here are some examples:

IPv6 Address Mapped IPv4 Address
::ffff:10.0.0.0 10.0.0.0

::ffff:172.16.0.5 172.16.0.5

::ffff:192.168.0.1 192.168.0.1

::ffff:192.168.50.1 192.168.50.1

You may also run into IPv6 site-local addresses. These site-local addresses are in
the fec0::/10 range and are for use on private local networks. Site-local addresses have
now been deprecated and should not be used for new networks, but many existing
implementations still use them.

Another address type that you should be familiar with are link-local addresses. Link-local
addresses are usable only on the local link. Routers never forward packets from these
addresses. They are useful for a system to accesses auto-configuration functions before
having an assigned IP address. Link-local addresses are in the IPv4 169.254.0.0/16
address block or the IPv6 fe80::/10 address block.

Introducing Networks and Protocols Chapter 1

[20]

It should be noted the IPv6 introduces many additional features over IPv4 besides just a
greatly expanded address range. IPv6 addresses have new attributes, such as scope and
lifetime, and it is normal for IPv6 network interfaces to have multiple IPv6 addresses. IPv6
addresses are used and managed differently than IPv4 addresses.

Regardless of these differences, in this book, we strive to write code that works well for
both IPv4 and IPv6.

If you think that IPv4 addresses are difficult to memorize, and IPv6 addresses impossible,
then you are not alone. Luckily, we have a system to assign names to specific addresses.

Domain names
The Internet Protocol can only route packets to an IP address, not a name. So, if you try to
connect to a website, such as example.com, your system must first resolve that domain
name, example.com, into an IP address for the server that hosts that website.

This is done by connecting to a Domain Name System (DNS) server. You connect to a
domain name server by knowing in advance its IP address. The IP address for a domain
name server is usually assigned by your ISP.

Many other domain name servers are made publicly available by different organizations.
Here are a few free and public DNS servers:

DNS Provider IPv4 Addresses IPv6 Addresses
Cloudflare 1.1.1.1 1.1.1.1 2606:4700:4700::1111

1.0.0.1 2606:4700:4700::1001

FreeDNS 37.235.1.174

37.235.1.177

Google Public DNS 8.8.8.8 2001:4860:4860::8888

8.8.4.4 2001:4860:4860::8844

OpenDNS 208.67.222.222 2620:0:ccc::2

208.67.220.220 2620:0:ccd::2

Introducing Networks and Protocols Chapter 1

[21]

To resolve a hostname, your computer sends a UDP message to your domain name server
and asks it for an AAAA-type record for the domain you're trying to resolve. If this record
exists, an IPv6 address is returned. You can then connect to a server at that address to load
the website. If no AAAA record exists, then your computer queries the server again, but
asks for an A record. If this record exists, you will receive an IPv4 address for the server. In
many cases, a site will publish an A record and an AAAA record that route to the same
server.

It is also possible, and common, for multiple records of the same type to exist, each pointing
to a different address. This is useful for redundancy in the case where multiple servers can
provide the same service.

We will see a lot more about DNS queries in Chapter 5, Hostname Resolution and DNS.

Now that we have a basic understanding of IP addresses and names, let's look into detail of
how IP packets are routed over the internet.

Internet routing
If all networks contained only a maximum of only two devices, then there would be no
need for routing. Computer A would just send its data directly over the wire, and computer
B would receive it as the only possibility:

The internet today has an estimated 20 billion devices connected. When you make a
connection over the internet, your data first transmits to your local router. From there, it is
transmitted to another router, which is connected to another router, and so on. Eventually,
your data reaches a router that is connected to the receiving device, at which point, the data
has reached its destination:

Introducing Networks and Protocols Chapter 1

[22]

Imagine that each router in the preceding diagram is connected to tens, hundreds, or even
thousands of other routers and systems. It's an amazing feat that IP can discover the correct
path and deliver traffic seamlessly.

Windows includes a utility, tracert, which lists the routers between your system and the
destination system.

Here is an example of using the tracert command on Windows 10 to trace the route to
example.com:

Introducing Networks and Protocols Chapter 1

[23]

As you can see from the example, there are 11 hops between our system and the destination
system (example.com, 93.184.216.34). The IP addresses are listed for many of these
intermediate routers, but a few are missing with the Request timed out message. This
usually means that the system in question doesn't support the part of the Internet Control
Message Protocol (ICMP) protocol needed. It's not unusual to see a few such systems when
running tracert.

In Unix-based systems, the utility to trace routes is called traceroute. You would use it
like traceroute example.com, for example, but the information obtained is essentially
the same.

More information on tracert and traceroute can be found in Chapter 12, Network
Monitoring and Security.

Sometimes, when IP packets are transferred between networks, their addresses must be
translated. This is especially common when using IPv4. Let's look at the mechanism for this
next.

Local networks and address translation
It's common for households and organizations to have small Local Area Networks (LANs).
As mentioned previously, there are IPv4 addresses ranges reserved for use in these small
local networks.

These reserved private ranges are as follows:

10.0.0.0 to 10.255.255.255
172.16.0.0 to 172.31.255.255
192.168.0.0 to 192.168.255.255

When a packet originates from a device on an IPv4 local network, it must undergo
Network Address Translation (NAT) before being routed on the internet. A router that
implements NAT remembers which local address a connection is established from.

Introducing Networks and Protocols Chapter 1

[24]

The devices on the same LAN can directly address one another by their local address.
However, any traffic communicated to the internet must undergo address translation by
the router. The router does this by modifying the source IP address from the original
private LAN IP address to its public internet IP address:

Likewise, when the router receives the return communication, it must modify the
destination address from its public IP to the private IP of the original sender. It knows the
private IP address because it was stored in memory after the first outgoing packet:

Network address translation can be more complicated than it first appears. In addition to
modifying the source IP address in the packet, it must also update the checksums in the
packet. Otherwise, the packet would be detected as containing errors and discarded by the
next router. The NAT router must also remember which private IP address sent the packet
in order to route the reply. Without remembering the translation address, the NAT router
wouldn't know where to send the reply to on the private network.

Introducing Networks and Protocols Chapter 1

[25]

NATs will also modify the packet data in some cases. For example, in the File Transfer
Protocol (FTP), some connection information is sent as part of the packet's data. In these
cases, the NAT router will look at the packet's data in order to know how to forward future
incoming packets. IPv6 largely avoids the need for NAT, as it is possible (and common) for
each device to have its own publicly-addressable address.

You may be wondering how a router knows whether a message is locally deliverable or
whether it must be forwarded. This is done using a netmask, subnet mask, or CIDR.

Subnetting and CIDR
IP addresses can be split into parts. The most significant bits are used to identify the
network or subnetwork, and the least significant bits are used to identify the specific device
on the network.

This is similar to how your home address can be split into parts. Your home address
includes a house number, a street name, and a city. The city is analogous to the network
part, the street name could be the subnetwork part, and your house number is the device
part.

IPv4 traditionally uses a mask notation to identify the IP address parts. For example,
consider a router on the 10.0.0.0 network with a subnet mask of 255.255.255.0. This
router can take any incoming packet and perform a bitwise AND operation with the subnet
mask to determine whether the packet belongs on the local subnet or needs to be forwarded
on. For example, this router receives a packet to be delivered to 10.0.0.105. It does a
bitwise AND operation on this address with the subnet mask of 255.255.255.0, which
produces 10.0.0.0. That matches the subnet of the router, so the traffic is local. If, instead,
we consider a packet destined for 10.0.15.22, the result of the bitwise AND with the
subnet mask is 10.0.15.0. This address doesn't match the subnet the router is on, and so it
must be forwarded.

IPv6 uses CIDR. Networks and subnetworks are specified using the CIDR notation we
described earlier. For example, if the IPv6 subnet is /112, then the router knows that any
address that matches on the first 112 bits is on the local subnet.

So far, we've covered only routing with one sender and one receiver. While this is the most
common situation, let's consider alternative cases too.

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1 - Getting Started with Network Programming
	Chapter 1: Introducing Networks and Protocols
	Technical requirements
	The internet and C
	OSI layer model
	TCP/IP layer model
	Data encapsulation
	Internet Protocol
	What is an address?

	Domain names
	Internet routing
	Local networks and address translation
	Subnetting and CIDR

