Beginning
Git and GitHub

A Comprehensive Guide to Version Control,
Project Management, and Teamwork
for the New Developer

Mariot Tsitoara

ApPress

Beginning Git and GitHub

A Comprehensive Guide to Version
Control, Project Management, and
Teamwork for the New Developer

Mariot Tsitoara

Apress’

Beginning Git and GitHub

Mariot Tsitoara
Antananarivo, Madagascar

ISBN-13 (pbk): 978-1-4842-5312-0 ISBN-13 (electronic): 978-1-4842-5313-7
https://doi.org/10.1007/978-1-4842-5313-7

Copyright © 2020 by Mariot Tsitoara

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484253120. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5313-7

This book is dedicated to the generous people that made
the Git community such an awesome environment to work within.
You have helped create one of the most useful tools in the tech world.
Thank you!

Table of Contents

About the AULNOFccciiiiieemniiisssnnrnssn s aan e ann s e e s s annnensnnns Xiii
About the Technical REVIEWETucussseessrssssnnnssssssnnsssssssssssssssssssssssssssnssssssnnssssssnnnnss XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
LT LT] Xix
Part I: Version Control with Git..........ccooummmmmmmmmmmmmmsssssssmssmmmm——. 1
Chapter 1: Version Control Systems.........ccccvuumsmmnmmsssssnnmmsssssssnmssssssnnsssssssssssssssnnnsnss 3
What iS VErsion CONTIOI?.........ccvieeverierierreesessersee e sessse e sesssssessessesssssesaesaesssesassaesssssssssesnennnes 3
WHY 0O YOU NEEU ONE?......ecerereerieirerese s e s s e s sae e s sae e e e s s sa e e s s s sae e s e e aesaesaenenaennens 4
What are the CROICES?ccvcrererirrire s r e s a e se e ae s a e a e e s e nae s 7
Local Version Control SYSIEMScccvcrierereriniene s sense s s s sesse s sseses e ssessessssessessesasssssessesaes 7
Centralized Version Control SYSIEMS.......ccovvvvvverevnnenseriere s s s sse e sessessessesssssssessesaes 8
Distributed Version Control SYSTEMSccccveverrrieriennserserese s sessessesessessessesssssssessessessssessessens 9

L L L) OO 11

L LT = N Ty 11

HOW d0ES Git WOIK? ...ceeeerreeriererie s sererse st ses e sae e s e s sre s s e ssesaesassassesaesaessssesaesaessssesnesnees 12
What is the typical Git WOrKFIOW?.........ccvcerivnnrierierssessene s ssessssessessesssssssessessessssessesnes 13

3111 1117 OO R 17
Chapter 2: Installation and Setup.......cccccccrrninnssmmmmmnnnrmn s ———————— 19
1 E53 2 1 = 11T 1 19

L 0T 0 21

1 T 29

I T 30

B 11410 0 JC T SO SSTTSTRSTR 33

E 1] 04 RS 34

TABLE OF CONTENTS

Chapter 3: Getting Started.........cccursmmmmnisnnnmnssssnnmmnmsssnmnsssss s ———————— 35
REPOSITONIES ... e e 35
WOTKING DIFECIONYceeeeeeeeree e nrnns 38
STAGING ABQ......coeeeeeeeerese e e R e e e e e e e e e Re e pe e ne e e e nRn e 40
(0]] SRS STPRTT 41
Quick start With Git ... —————————— 46
ES 11114 R 48

Chapter 4: Diving into Git........ccccussemnsrmsssnnnnmnssssnmmmsssssssessssssssesssssssessssnssessssnnnnenss 49
1ONOKING FIlES ... e 49
Checking 10gS and NiSTOrY........ccccurininniin e e e 55
VIEWiNg PreViOUS VEISIONScccoveererererseserensesesesesssssssssessssssssssssssesssssssssssssssssnssssssssssssssssnsssnses 58
Reviewing the Current CHaNGES ..o s 60
E 1] 04 RS 61

Chapter 5: COMMILS ..ccvvieeeernmnnnnsmnsssssssss s ssnsn s nnnnn s s s e enssnsnnn 63
The three States 0Of Git..........covriierrri 63
Navigating DEtWEEN VEISIONS........ccccciviririere s s r s s r e s 64
UNAO @ COMMUL......eeeeeecee e e e e e e e 67
Modifying @ COMMILccovoeeieeerescr e 71
Amending @ COMMIL.......ccuoeiisrnesrer e se e nr s 77
£ 11104 7RSS 78

Chapter 6: Git Best PractiCes......uuuumemmmmmmmmmmmmmssssssssmmmsssmssssssssssssssssssssssssssssssssssssns 79
COMMIT MESSAGES ..veveueruerrerrererserersessessrsessersessssessessessssessessesasssssessessessssessessessessssessessessesensessenes 79

Git cCOMMIt DEST PraCliCES.....ccvruerrererierrere st sr e saesa e se e e aenne s 80
L= o O 82
=40 o[S 82
HOW Git WOIKS (AQIN).....coreererererrenerenesessesessesesesesessese s sessesessssessssssessssessssesssssssssssssssessssssnns 84
SUMIMAIY....evieeteesiee s e s e R e e e e e e Re e s e e e nen e e e Re e Re e nen e e nsnnnes 86

TABLE OF CONTENTS

Chapter 7: Remote Git........cooccmrrmsssmnnmmnssssnnmmssssssssmsssssssssssssssssssssssnsssssssnsnsssssnnnnsnnss 87
WRY WOK ON FEIMOTE.......civiiiecirsire s sr s s sb e e b e nne s 87
HOW dOBS It WOIK ... 88
THE BASY WAYveerecersesessesesrese s e sse e e e ses e s e e ss e ae e sae e s ss e e e e s e e nse e nre e ne e e senan e nse e nenas 90
SUMIMANY ...ttt e s e ne R e e e e e R e e e R e e e nRe e e Re e Ra e nrn e nnnrn e 92

Part II: Project Management with GitHubcccccnirrnnninneeennnnnnnnnnns. 93

Chapter 8: GitHub Primer........cccccuisemmmnnnssnnnnmnsssssnmmssssssnsesssssssssssssssssesssssssssssssnnnsnnss 95
GItHUD OVEIVIBW ...ttt 95
GitHub and OPen SOUICEccucrrerirrrcre s r s b s 96
PEISONAL USE ...t e e ne e e s 101
GItHUD TOr DUSINESSESeiveerrsesrsseserre s ne s 104
L1134 RS 104

Chapter 9: Quick Start with GitHub.............ccccviinmmemmnnn s ————————— 105
Project management...... ... e 105

How remote repoSitories WOTKccucevieririniensee e s s s e s s s s sassaesaessens 109
LiNKiNG rePOSITOMIBScvcveeeririiriee s s s s s r e s a e s s 110
Pushing to remote repOSItOFIESccvevreriererrerrere s e sae e saesaes 113
£ 11134 7 118

Chapter 10: Beginning Project Management: ISSUES......c.uusemrrnsssnnnssssssssnssssssnnnnss 119
OVEIVIBW 0N ISSUEBSveeeeucerseerseeresesessesesseessssesessesessesessssssssssssssssssssssssssensssesssensensssensssnnssnns 119
CreatiNg AN ISSUE ...c.cvueereecrerscsesese s sesse e se s sse e s e se e e se e s e ne s e se e neesenenns 120
Interacting With @n iSSUEccoveeric e 125

[0] 3SR 127
ASSIGNEESvrveerreerreesrse e e s e e s e s e e e e e e R e R e e e e Re e R e e e e rnRe e s 131
Linking issues With COMMILScccovvririninnrrr e 132
Working on the COMMIL ... s 133
REfErenCiNg N ISSUB.....cccvuiiercirere st s et st s s ne e s e e 134
Closing an isSue USING KEYWOIUSc.cuceeerrererensesesenesesessssessssssessssessssesssssssssssessssssssssssssenes 138
£ 11134 R 140

vii

TABLE OF CONTENTS

Chapter 11: Diving into Project Management: Branches.........ccuccumrnsssnnnssssssnnnnss 141
GItHUD WOTKFIOW ...t 142
L2 111 T 144

Creating @ BrancCh ... —————— 146
Switching to another Branch ... ———— 147
Deleting @ branch ... —————— 149
Merging DranChes.........ccevincin e e 151
Pushing a branch to remote ... ————— 156
£SO 158

Chapter 12: Better Project Management: Pull Requestsc.ccuummmmnsssnnnnnssssnnnnns 159
WhY USE PUIl REQUESTS?......ceereeeirrcirree e e ss s s ss s s ss s sss e sessessnsenens 159
OVErview 0N PUIl REQUESTScvvererererrereresee e sse st ses e ssessessssssessessesessessessesssssssesaessesessessesses 160

PUIL e p s 160
What does @ PR A0 ... s 161
Create a PUll REQUESTccvvrererirere sttt s s e e 162
C0UE REBVIBWScvececcrerisiss e se s e sa s 173
GiVE @ COUE RBVIBWcvvecccrisisiss e s s 173
Leave a review COMMENTcovvemrermnmssssess s s s ssssaes 174
Update @ PUll REQUEST.........ccooe ettt r e sa e s s s e s sn e s s e e sn e e 178
SUMIMANY ..ttt R e e e e e R e e e e e e e R e R e e e e e Re e Re R e b e e e RenR e e e e naenrs 182

Part Ill: Teamwork with Git..........ccccccvisnneemmmmmmmmmmssssssmmmmsssssssms 183

Chapter 13: Conflictscccvismmmmmmssnnnmmmsssssnnmnsssssnnmssssssssmssssssnnesssssnnssssssnnnsesssnnnnnss 185
HOW @ MEIGJE WOTKSveiuiiiiiiesieresses s st s s s sa e st s d e nn e s e e nne e 185

PUIING ...ttt 186
R (0] V=V I 10T O 189
MErge CONTIICESvvuerieircerc e e e s s a e e sae s a e e e e e e nne e 193
Pulling commits from OFigiNc.ccoievrvrierierrrerere s s s se e saesaesessessesnes 198
Resolving Merge CONTlICEScvcvverererrerere s sere s s sa e s sae e s naennes 204
£ 1134 7 210

viii

TABLE OF CONTENTS

Chapter 14: More About Conflicts........ccussemrrnssssnnnmmsssnnnnnsssssnnmnsssssssssssssnnsesssssnnns 211
Pushing after a conflict resSolution ... ———— 211
Review changes Defore MEIge ... 212

Check branch 10CaLON............ccvereer e 213
Review Dranch diffcooeoeerreceeer e 213
UNderstand Mergingccocoveerreneresernsesesesesese s ses e e ses e s s se s e ssssessesssesssenns 214
ReducCing CONTIICTScoeeereeerinsesrrese s 215
Having @ good WOIKFIOWcccveimrinernesrnesene e 215
ADOIING @ MEIGR...c.veerercerreserree s s s se e r e se s e s e e nre e sennn e nnennns 216
Using @ Visual Git t0O0].......c.cccverenernserrnesere e e 217
10T 111 1T o SRS 217

Chapter 15: Git GUI TOOISccutrrmmmmmmssnmnsnnmmmsmmmsssssssssssssssssssssssssssssssssssssssnnnnnssssnss 219

DEfaUIt tOOIS......ccciicererc e —————————————— 219
{00010 0 0) o 219
BrOWSING: GItK....ooveierieriiesieserser e s s s s s r e s a e s s e e ne e 231

IDE £00ISceiveerereereseeeee e R p e 232
LU e U (0T (0 T TR 232
] R 234

SPECIAlIZEA T00IS......ccv i ————————— 235
GItHUD DESKLOP.....eiererec et p e e s 236
C T L T 236

£ 117 S 237

Chapter 16: Advanced Git........ccccusemmmmmsssnnmmmsssssnnmmssssssnmsssssssnessssssnsssssssnnsessssnnnnss 239
(31: 1T o (11 o OSSOSO 239
£] 11T OO 241
LT 11 oSSR 246
31111117 OO S 249

ix

TABLE OF CONTENTS

Part IV: Additional ReSOUICEeScuremerrrrrmmsssrsnmnssssnsnssssnnssssssnnnssnnnnnnsnes 29 1

Chapter 17: More with GitHubccccccsiemninnneennnnssssnssss s 253
WIKIS 1.vuvvereeseseseseeseeeesssss s s sss s e e e e e e bbb b b nE e e e e e 253
GITHUD PAJES......ccectetcerr st e e s 256
REIBASES.......ceeeeereer e e ne s 260
PrOJECE BOAIUS.....ccvieerreerieerisesese s e e ne e 263
11T 111 1T o OSSOSO 267

Chapter 18: Common Git Problems.......cccccuiinmmmmsssssssnmmmmmmmssssssssssssssmssssssssssss 269
2T 010 (0] OO 269

LS L (111001 R 269
08 1 T 10T 0 o 270
WOIKING DIFBCIOIYceeeeeceeriree e seressee e s e s s se e s a e s s e s s sae s s e e a e sae s e e e e snesae e e e neenesaenaes 271
LT T3 3=T 1] 1O 271
UNndo changes 10 @ file........cccviriniiniririn e e 272
0] 0111 TSP 272
o (0T T I o0]] TS 272
UNAO COMIMILS ... e nsns e 273
L2 1T 1T 274
DEtached HEAD..........cooeceecreree s s n e nre e 274
Worked on Wrong DIaNCh ..o s s s s 275
Catch up with parent Branch............cciicn s ——— 275
Branches have diVErged..........ccirinin s s 277
£ S 279

Chapter 19: Git and GitHub Workflowccccuseemmmmssssnnnmssssssnnmssssssnsssssssssssssssnnnnss 281
How t0 use this WOrKFIOWcccovmiinn s 281
GItHUD WOTKFIOW ...t 281

Every project starts With @ projectccovvvvrrrinnrn s 282
Every action starts With @n ISSUEcceveevrrrrenienn s se s ssessssessesnes 282
NO direct PuUSh 0 MASTENcvcrererr e e enes 282

TABLE OF CONTENTS

Any merge into master needs @ PR ... s 283

Use the wiki to documeNnt YOUr COUEccveririerieereriirrer s 283

Gt WOTKFIOW ...c.cvieccccere s 283
AlWayS KNOW WHEIE YOU @FE......ccccerrerrerreiensessessessssessessesssssssessessesssssssessessssssnsssessesssnssssssesses 283

Pull remote changes before any action..........cccccevrvrvnrenirin s 283

Take care of your COMMIT MESSAYE.......cererirrerreererierrer e s e sae e s 284
DT ol A N 1T (0] SR 284

BT 1] 111 SRS 284
INO@X . ueeeiiienrsssnnnsssnnssssnnsssssnsssssnsssssnssssnnnssssnnaasannansnnnansnnnnnsannnnssnnnnssnnnnssnnnnssnnnnnsnnss 285

xi

About the Author

Mariot Tsitoara is a Python and JavaScript developer

with a passion for the Open Web and Data. He has been
involved with Mozilla as a rep and a tech speaker since 2015
and has spoken extensively about Open Source and new
technologies, including Rust, WebVR, and WebAssembly.
Currently based in Bordeaux, he is constantly coding small,

specialized tools for education. You can find him on Twitter
= (@mariot_tsitoara.

xiii

About the Technical Reviewer

Alexander Chinedu Nnakwue has a background in
Mechanical Engineering from the University of Ibadan,
Nigeria, and has been a frontend developer for over 3 years
working on both web and mobile technologies. He also has
experience as a technical author, writer, and reviewer. He
enjoys programming for the Web, and occasionally, you can
also find him playing soccer. He was born in Benin City and
is currently based in Lagos, Nigeria.

Acknowledgments

I'd like to thank my parents, Marie Jeanne and Tsitoara, for the amazing opportunities
that they have given to me. Without their help and sacrifices, I would not be where I am
today.

Thanks a lot also to my brothers and sisters, Alice, Elson, Thierry, Eliane, Annick, and
Mamitiana, for being such amazing role models and for their constant support. To all my
friends, Christino, Laza, Miandry, Mihaja, Miora, and Rindra, with whom I grew up and
who taught me so much, I dedicate this book to you.

Almost everything I know about Git was taught to me by my coworkers. Thank you
for being so helpful and a joy to work with.

This book wouldn’t have seen the light of day if not for the amazing guidance of
Nancy, Alexander, Louise, and Jim. Thank you so much!

xvii

Introduction

This book was written with a clear goal in mind: to be the book that I needed to read
when I started my career in tech. Each chapter was crafted so that you will only be taught
what you need to know as a beginner. It isn’t a full reference book, but it can get you far
enough to have a big impact on your career.

After reading this book, you will have the best tools for Version Control and Project
Management.

Who is this book for

The targeted audience of this book is the absolute beginner with Git and GitHub and the
people who have used them a little but want to know more. If you are searching for the
best way to quick-start in the right direction, this book is for you.

How to use this book

Git is a very easy tool to learn, but you need to work with it to get the hang of it. The best
way to learn is to directly use it on one of your real projects. Just reading the book and
not doing any of the exercises will lengthen your learning curve.

Xix

PART |

Version Control with Git

CHAPTER 1

Version Control Systems

This is our first jump into Version Control Systems (VCSs). By the end of this chapter, you
should know about Version Control, Git, and its history. The main objective is to know in
which situations is Version Control needed and why Git is a safe choice.

What is Version Control?

As the name implies, Version Control is about the management of multiple versions of a
project. To manage a version, each change (addition, edition, or removal) to the files in a
project must be tracked. Version Control records each change made to a file (or a group
of files) and offers a way to undo or roll back each change.

For an effective Version Control, you have to use tools called Version Control
Systems. They help you navigate between changes and quickly let you go back to a
previous version when something isn’t right.

One of the most important advantages of using Version Control is teamwork.

When more than one person is contributing to a project, tracking changes becomes

a nightmare, and it greatly increases the probability of overwriting another person’s
changes. With Version Control, multiple people can work on their copy of the project
(called branches) and only merge those changes to the main project when they (or the
other team members) are satisfied with the work.

Note This book was written from a developer point of view, but everything in
it applies to any text files, not just code. Version Control Systems can even track
changes to many non-text files like images or Photoshop files.

© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_1

CHAPTER 1 VERSION CONTROL SYSTEMS

Why do you need one?

Have you ever worked on a text project or on a code that requires you to recall the
specific changes made to each file? If yes, how did you manage and control each version?
Maybe you tried to duplicate and rename the files with suffixes like “review,” “fixed,” or
“final”? Figure 1-1 shows that kind of Version Control.

local ves. local ves local ves local ves local ves
xcf (copy).xcf (Final).xcF (Final) (reviewed).
(copy).xcf xcf

Figure 1-1. Gimp files with suffixes like “final,” “final (copy),” and “reviewed”

The figure shows what many people do to deal with file changes. As you can see,
this has the potential to go out of hands very quickly. It is very easy to forget which file is
which and what has changed between them.

To track versions, one idea is to compress the files and append timestamps to the
names so that the versions are arranged by date of creation. Figure 1-2 shows that kind to

version tracking.

bl Lm. e e

local ves local ves local ves_ localves

20190501. 20190502. 20190504. 20190504

zip zip zip (reviewed).
zZip

Figure 1-2. Compressed version files sorted by dates

The solution shown in Figure 1-2 appears to be the perfect system until you realize
that even though the versions are tracked, there is no way to know what are the contents
and descriptions of each version.

4

CHAPTER 1 VERSION CONTROL SYSTEMS

To remediate that situation, some developers use a solution like the one showed in
Figure 1-3, which is to put the change summary of each version in a separate file.

— — f— — P ey

- L W R

local ves history local ves_ local ves_ local ves_ local ves_
20190501. 20190502. 20190504. 20190504
zip zZip zip (reviewed).

zip

20190501 installation of wordpress
20190502 - plugins and theme customizations
20190504 - fixed database configs

20190504 - sent to remote server [review]

PlainText ¥ Tabwidth:8 = Ln5, Col 1 v INS
T —

Figure 1-3. A separate file where each version is tracked

As Figure 1-3 shows, a separate file accompanies the project folder with a short
description of the change made. Also note the many compressed files which contain the
previous versions of the project.

That should do it, right? Not quite, you would still need a way to compare each version
and every file change. There is no way to do this in that system; you just need to memorize
everything you did. And if the project gets big, the folder just gets bigger with each version.

What happens when another developer or writer joins your team? Would you email
each other the files or versions you edited? Or work on the same remote folder? In the
last case, how would you know who is working on which file and what changed?

And lastly, have you ever felt the need to undo a change you made years ago without
breaking everything in the process? An unlimited and all-powerful ctrl-z?

All those problems are solved by using a Version Control System or VCS. A VCS
tracks each change you made to every file of your project and provides a simple way to

CHAPTER 1 VERSION CONTROL SYSTEMS

compare and roll back those changes. Each version of the project is also accompanied
by the description of the changes made along with a list of the new or edited files. When
more people join the project, a VCS can show exactly who edited a particular file on
a specific time. All of that makes you gain precious time for your project because you
can focus on writing instead of spending time tracking each change. Figure 1-4 shows a
versioned project managed by Git.

As shown in Figure 1-4, a versioned project combines all the solutions we tried in
this chapter. There are the change descriptions, the teamwork, and the edit dates.

mariot@lenovo-ideapad: ~/Projects/Rocket

File Edit View Search Terminal Help
3 f 3 f HEAD -> master,
r: Oliver Scherer < J 891676564198441@0l1-obk.de>
Tue Jan 22 1 { +B188

Always produce a valid, if conservative, subspan.

: jeb <jebgj
Sun Dec 36 1

Author: Sergilo Benit
Date: L

Remove duplicate 'use' inm 'helmet' tests.

: Sergio Benitez
Wed Feb 6 19

Update deprecated 'trim_right()' to 'trim_end()'.
Sergio Beni 34,7 gio.bz>
Wed Feb 6 2619 -0866
e explicit associated type in 'IntoOwned® impl.
Sergio Benitez
Wed Feb 6 17: 11 2¢
Update 'Ro ::custom()' docs to match signature.

Resolves #910.

19 -0860

change ‘rocket_contrib’ to not depend on default features from “rocket”.

Figure 1-4. A project versioned by Git

Let’s find out more about Version Control Systems.

CHAPTER 1 VERSION CONTROL SYSTEMS

What are the choices?

There are many flavors of Version Control Systems, each with their own advantages and
shortcomings. A VCS can be local, centralized, or distributed.

Local Version Control Systems

These are the first VCSs created to manage source code. They worked by tracking the
changes made to files in a single database that was stored locally. This means that all the
changes were kept in a single computer and if there were problems, all the work were
lost. This also means that working with a team was out of the question.

One of the most popular local VCSs was Source Code Control System or SCCS, which
was free but closed source. Developed by AT&T, it was wildly used in the 1970s until
Revision Control System or RCS was released. RCS became more popular than SCCS
because it was Open Source, cross-platform, and much more effective. Released in 1982,
RCS is currently maintained by the GNU Project. One of the drawbacks of these two local
VCSs was that they only worked on a file at a time; there was no way to track an entire
project with them.

To help you visualize how it works, here’s Figure 1-5 which shows an illustration of a
simple local VCS.

user's computer

database

file version 1

version 2

version n

Figure 1-5. How a local VCS works

As you can see in Figure 1-5, everything is on the user’s computer, and only one file is
tracked. The versioning is stored in a database managed by the local VCS.

CHAPTER 1 VERSION CONTROL SYSTEMS

Centralized Version Control Systems

Centralized VCS (CVCS) works by storing the change history on a single server that the
clients (authors) can connect to. This offers a way to work with a team and also a way to
monitor the general pace of a project. They are still popular because the conceptis so
simple and it’s very easy to set up.

The main problem was that, like local VCS, a server error can cost the team all their
work. A network connection was also required since the main project was stored in a
remote server.

You can see in Figure 1-6 how it works.

USER 1
file SERVER
database
version 1
version 2

USER 2
file version n

Figure 1-6. How a centralized VCS works

Figure 1-6 shows that a centralized VCS works similarly to a local VCS, but the
database is stored in a remote server.

The main problem faced by team using a centralized VCS is that once a file is being
used by someone, that file is locked and the other team members can’t work on it. Thus,
they had to coordinate between themselves just to modify a single file. This creates a lot
of delays in development and is generally source to a lot of frustration for contributors.
And the more members are on the team, the more problems arise.

In an effort to counter the problems of local VCS, Concurrent Version System or
CVS was developed. It was Open Source and could track multiple sets of files instead
of a single file. Many users could also work on the same file at the same time, hence the
“concurrent” in the name. All the history was stored in a remote repository, and the
users would keep up with the changes by checking out the server, meaning copying the
contents of the remote database to their local computers.

CHAPTER 1 VERSION CONTROL SYSTEMS

Apache Subversion or SVN was developed in 2000 and could be everything that CVS
could, with a bonus: it could track non-text files. One of the main advantages of SVN was
that instead of tracking a group of files like the previous VCS, it tracks the entire project.
So, it is essentially tracking the directory instead of files. That means that the renaming,
adding and removing are also tracked. This made SVN, along with it being Open Source,
avery popular VCS; and it is still wildly used today.

Distributed Version Control Systems

Distributed VCS works nearly the same as centralized VCS but with a big difference:
there is no main server that holds all the history. Each client has a copy of the repository
(along with the change history) instead of checking out a single server.

This greatly lowers the chance of losing everything as each client has a clone of
the project. With a distributed VCS, the concept of having a “main server” gets blurred
because each client essentially has all the power within their own repository. This greatly
encouraged the concept of “forking” within the Open Source community. Forking is
the act of cloning a repository to make your own changes and have a different take on
the project. The main benefit of forking is that you could also pull changes from other
repositories if you see fit (and others can do the same with your changes).

A distributed Version Control System is generally faster than the other types of VCS
because it doesn’t need a network access to a remote server. Nearly everything is done
locally. There is also a slight difference with how it works: instead of tracking the changes
between versions, it tracks all changes as “patches.” This means that those patches can be
freely exchanged between repositories, so there is no “main” repository to keep up with.

Figure 1-7 shows how a distributed VCS works.

CHAPTER 1 VERSION CONTROL SYSTEMS

USER 1
file
database
version 1

version 2

version n

SERVER
database

version 1
version 2

version n
USER 2
file
database
version 1
version 2

version n

Figure 1-7. How a distributed VCS works

Note By looking at Figure 1-7, it is tempting to conclude that there is a main
server that the users are keeping up with. But it isn’t the case with a distributed
VCS, it is only a convention that many developers follow to have a better workflow.

BitKeeper SCM was a proprietary distributed VCS released in 2000 which, like SCCS
in the 1970s, was closed source. It had a free “Community Version” that lacked many of
the big features of BitKeeper SCM, but since it was one of the first distributed VCSs, it
was pretty popular even in the Open Source community. This popularity of BitKeeper
plays a big role in the creation of Git. It is now an Open Source software, after having
its source code released under the Apache License in 2016. You can find the current
BitKeeper project on www.bitkeeper.org/; the development has slowed down, but there
is still a community contributing to it.

10

http://www.bitkeeper.org/

CHAPTER 1 VERSION CONTROL SYSTEMS

What is Git?

Remember the proprietary distributed Version Control System BitKeeper SCM from
the last section? Well, the Linux kernel developers used it for their development. The
decision to use it was wildly regarded as a bad move and made many people unhappy.
Their fears were confirmed in 2005 when BitKeeper SCM stopped being free. Since it was
closed source, the developers lost their favorite Version Control System. The community
(led by Linus Torvalds) had to find another VCS, and since an alternative was not
available, they decided to create their own. Thus, Git was born.

Since Git was made to replace BitKeeper SCM, it worked generally the same with
a few tweaks. Like BitKeeper SCM, Git is a distributed Version Control System, but it is
faster and works better with large projects. The Git community is very active, and there
are many contributors involved in its development; you can find more about Git on
https://git-scm.com/. The features of Git and how it works are explained later in
this section.

What can Git do?

Remember all those problems we tried to solve at the beginning of this chapter? Well, Git
can solve them all. It can even solve problems you didn’t know you had!
First, it works great with tracking changes. You can

e Go back and forth between versions
o Review the differences between those versions
e Check the change history of a file
o Taga specific version for quick referencing
Git is also a great tool for teamwork. You can
o Exchange “changesets” between repositories
e Review the changes made by others

One of the main features of Git is its Branching system. A branch is a copy of a project
which you can work on without messing with the repository. This concept has been
around for some time, but with Git, it is way faster and more efficient. Branching also
comes along with Merging, which is the act of copying the changesets done in a branch

11

https://git-scm.com/

CHAPTER 1 VERSION CONTROL SYSTEMS

back to the source. Generally, you create a branch to create or test a new feature and
merge that branch back when you are satisfied with the work.

There is also a simple concept that you might use a lot: Stashing. Stashing is the act
of safely putting away your current edits so that you have clean environment to work on
something completely different. You might want to use stashing when you are playing
around or testing a feature but need to work on a new feature in priority. So, you stash
your changes away and begin to write that feature. After you are done, you can get your
changes back and apply them to your current working environment.

As a little appetizer, here are some of the Git commands you will learn in this book:

$ git log
$ git branch

Check the history of the project
List, create or delete branches
$ git merge Merge the history of two branches together

$ git stash

$ git init # Initialize a new git database
$ git clone # Copy an existing database
$ git status # Check the status of the local project
$ git diff # Review the changes done to the project
$ git add # Tell Git to track a changed file
$ git commit # Save the current state of the project to database
$ git push # Copy the local database to a remote server
$ git pull # Copy a remote database to a local machine
#
#
#
#

Keep the current changes stashed away to be used later

Asyou can see, the commands are pretty self-explanatory. Don’t worry about
knowing all of them by heart; you will retain them one by one when we will properly
begin the learning. And you will not also use them all the time, you will mostly use
git add and git commit. You will learn about each command, but we will focus on the
commands that you will likely use in a professional setting. But before that, let’s see the
inner working of Git.

How does Git work?

Unlike many Version Control Systems, Git works with Snapshots, not Differences. This
means that it does not track the difference between two versions of a file, but takes a
picture of the current state of the project.

12

CHAPTER 1 VERSION CONTROL SYSTEMS

This is why Git is very fast compared to other distributed VCSs; it is also why
switching between versions and branches is so fast and easy.

Remember how a centralized Version Control System works? Well, Git is the
complete opposite. You don’t need to communicate with a central server get work done.
Since Git is a distributed VCS, every user has their own fully fledged repository with
their own history and changesets. Thus, everything is done locally except the sharing
of patches or changesets. Like previously said, a central server is not needed; but many
developers use one as convention as it is easier to work that way.

Speaking of patch sharing, how does Git know which changesets are whose? When
Git takes a snapshot, it performs a checksum on it; so, it knows which files were changed
by comparing the checksums. This is why Git can track changes between files and
directories easily, and it also checks for any file corruption.

The main feature of Git is its “Three States” system. The states are the working
directory, the staging area, and the git directory:

o The working directory is just the current snapshot that you are
working on.

o The staging area is where modified files are marked in their current
version, ready to be stored in the database.

o The git directory is the database where the history is stored.

So, basically Git works as follows: you modify the files, add each file you want to
include in the snapshot to the staging area (git add), then take the snapshot and add
them to the database (git commit). For the terminology, we call a modified file added
to the staging area “staged” and a file added to the database “committed.” So, a file goes
from “modified” to “staged” to “committed.”

What is the typical Git workflow?

To help you visualize all that we talked about in this section, here is a little demo of what
a typical workflow using Git is like. Don’t worry if you don’t understand everything right
now; the next chapters will get you set up.
This is your first day of work. You are tasked to add your name to an existing project
description file. Since this is your first day, a senior developer is there to review your code.
The first thing you should do is get the project’s source code. Ask your manager for
the server where the code is stored. For this demo, the server is GitHub, meaning that the

13

CHAPTER 1 VERSION CONTROL SYSTEMS

Git database is stored on a remote server hosted by GitHub and you can access it by URL
or directly on the GitHub web site. Here, we are going to use the clone command to get
the database, but you could also just download the project from the GitHub web site. You
will get a zip file containing and the project files with all its history.

So, you clone the repository to get the source code by using the “clone” command.

git clone https://github.com/mariot/thebestwebsite.git

Git then downloads a copy of the repository in the current directory you are working
from. After that, you can enter the new directory and check its contents as shown in
Figure 1-8.

oT@ 1deap

Mar i1enov pad ~/Documents /Boky/raw (master)
$ cd thebestwebsite/

Mariot@le sapad ~/Documents /Boky/raw/thebestwebsite (master)
$ dir

gulpfile.js LICENSE nginx package.json README.md src vyarn.lock
Mariot@lenovo-ideapad ~/Documents /Boky/raw/thebestwebsite (master)
$|

Figure 1-8. The contents of the repository is shown

If you want to check the recent changes made to the project, you can use the “log”
command to show the history. Figure 1-9 shows an example of that.

14

CHAPTER 1 VERSION CONTROL SYSTEMS

Mariot@lenovo-ideapad MIN 4 ~/Documents/Boky/raw/thebestwe
$ git log

commit 0cc01f912449ed913c9f48673a4b450a66951f31 (HEAD -> mas
Author: Denys Vitali <denys@denv.it>

Date: Fri Jan 18 17:44:45 2019 +0100

Add Hugo Theme references
Reference: https://github.com/hugomodo/hugomodo-best-mot
commit 033eb62a526e4ffd9c73257ab37e76c9d484cd74
Author: Denys Vitali <denys@denv.it>
Date: Thu Jan 10 10:46:28 2019 +0100
Fix #31, add inverted-contrast mode
commit 74452d4c8cacb2dcad4431532eb99ccac4b00eac
Merge: 13e4f7e 6c3ba3l
Author: Denys Vitali <denys@denv.it>
Date: Mon Nov 12 10:12:39 2018 +0100
Merge pull request #30 from numbermaniac/patch-1
create -> created
commit 6c3ba31b95190fdaecf95b9af2b9d2f5554d7203
Author: numbermaniac <numbermaniac@users.noreply.github. com>

Date: Sun Nov 11 11:22:45 2018 +1100

create -»> created

Figure 1-9. A typical Git history log

Nice! Now you should create a new branch to work on so that you don’t mess up with
the project. You can create a new branch by using the “branch” command and checking
it out with the “checkout” command.

git branch add-new-dev-name-to-readme
git checkout add-new-dev-name-to-readme

Now that the new branch is created, you can begin to modify the files. You can use
whatever editor you want; Git will track all the changes via checksums. Now that you made
the necessary changes, it is time to put them on the staging area. As a reminder, the staging
area is where you put modified codes that are ready to be snapshotted. If we modified the
“README.md"” file, we can add it to the staging area by using the “add” command.

git add README.md
15

CHAPTER 1 VERSION CONTROL SYSTEMS

You don’t have to add every file you modified to the staging area, only those which
you want to be accounted in the snapshot. Now that the file is staged, it is time to
“commit” it or putting its change in the database. We do this by using the command
“commit” and attaching a little description with it.

git commit -m "Add Mariot to the list of developers”

And that’s it! The changes you made are now in the database and safely stored. But
only on your computer! The others can’t see your work because you worked on your
own repository and on a different branch. To show your work to others, you have to push
your commits to the remote server. But you have to show the code to the senior dev first
before making a push. If they are okay with it, you can merge your branch with the main
snapshot of the project (called the master branch). So first you must navigate back to the
master branch by using the “checkout” command.

git checkout master

You are now on the master branch, where all the team’s work is stored. But the time
you worked on your fix, the project may have changed, meaning that a team member
may have changed some files. You should retrieve those changes before committing your
own changes to master. This will limit the risk of “conflicts” which can happen when
two or more contributors change the same file. To get the changes, you have to pull the
project from the remote server (also called origin).

git pull origin master

Even if another coworker changed the same file as you, the risk of conflicts is low
because you only modified a line. Conflicts only arise when the same line has been
modified by multiple people. If you and your coworkers changed different parts of the
file, everything is okay.

Now that we kept up with the current state of the project, it’s time to commit our
version to master. You can merge your branch with the “merge” command.

git merge add-new-dev-name-to-readme

Now that the commit has been merged back to master, it is time to push the changes
to the main server. We do that by using to “push” command.

git push

16

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Version Control with Git
	Chapter 1: Version Control Systems
	What is Version Control?
	Why do you need one?
	What are the choices?
	Local Version Control Systems
	Centralized Version Control Systems
	Distributed Version Control Systems

	What is Git?
	What can Git do?
	How does Git work?
	What is the typical Git workflow?

