
M A N N I N G

IN DEPTH
Jon Skeet

FOREWORD BY ERIC LIPPERT

FOURTH EDITION

Praise for the Third Edition

“A must-have book that every .NET developer should read at least once.”

—Dror Helper, Software Architect, Better Place

“C# in Depth is the best source for learning C# language features.”

—Andy Kirsch, Software Architect, Venga

“Took my C# knowledge to the next level.”

 —Dustin Laine, Owner, Code Harvest

“This book was quite an eye-opener to an interesting programming language that I have been
unjustly ignoring until now.”

—Ivan Todorović, Senior Software Developer
AudatexGmbH, Switzerland

“Easily the best C# reference I’ve found.”

 —Jon Parish, Software Engineer, Datasift

“Highly recommend this book to C# developers who want to take their knowledge to pro
status.”

—D. Jay, Amazon reviewer

Praise for the Second Edition

“If you are looking to master C# then this book is a must-read.”

—Tyson S. Maxwell, Sr. Software Engineer, Raytheon

“We’re betting that this will be the best C# 4.0 book out there.”

—Nikander Bruggeman and Margriet Bruggeman
.NET consultants, Lois & Clark IT Services

“A useful and engaging insight into the evolution of C# 4.”

—Joe Albahari, Author of LINQPad and C# 4.0 in a Nutshell

“This book should be required reading for all professional C# developers.”

—Stuart Caborn, Senior Developer, BNP Paribas

ii

“A highly focused, master-level resource on language updates across all major C# releases. This
book is a must-have for the expert developer wanting to stay current with new features of the C#
language.”

—Sean Reilly, Programmer/Analyst Point2 Technologies

“Why read the basics over and over again? Jon focuses on the chewy, new stuff!”

—Keith Hill, Software Architect, Agilent Technologies

“Everything you didn’t realize you needed to know about C#.”

—Jared Parsons, Senior Software Development Engineer, Microsoft

Praise for the First Edition

“Simply put, C# in Depth is perhaps the best computer book I’ve read.”

 —Craig Pelkie, Author, System iNetwork

“I have been developing in C# from the very beginning and this book had some nice surprises
even for me. I was especially impressed with the excellent coverage of delegates, anonymous
methods, covariance and contravariance. Even if you are a seasoned developer, C# in Depth
will teach you something new about the C# language.... This book truly has depth that no
other C# language book can touch.”

 —Adam J. Wolf, Southeast Valley .NET User Group

“This book wraps up the author’s great knowledge of the inner workings of C# and hands it
over to readers in a well-written, concise, usable book.”

 —Jim Holmes, Author of Windows Developer Power Tools

“Every term is used appropriately and in the right context, every example is spot-on and con-
tains the least amount of code that shows the full extent of the feature...this is a rare treat.”

 —Franck Jeannin, Amazon UK reviewer

“If you have developed using C# for several years now, and would like to know the internals,
this book is absolutely right for you.”

 —Golo Roden
Author, Speaker, and Trainer for .NET and related technologies

“The best C# book I’ve ever read.”

 —Chris Mullins, C# MVP

C# in Depth
FOURTH EDITION

JON SKEET
FOREWORD BY ERIC LIPPERT

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Richard Wattenberger
20 Baldwin Road Technical development editor: Dennis Sellinger
PO Box 761 Review editor: Ivan Martinović
Shelter Island, NY 11964 Production editor: Lori Weidert

Copy editor: Sharon Wilkey
Technical proofreader: Eric Lippert

Typesetter and cover designer: Marija Tudor

ISBN 9781617294532
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

http://www.manning.com

 This book is dedicated to equality, which is significantly harder to achieve in the real
world than overriding Equals() and GetHashCode().

vi

vii

contents
foreword xvii
preface xix
acknowledgments xx
about this book xxii
about the author xxvi
about the cover illustration xxvii

PART 1 C# IN CONTEXT ... 1

1 Survival of the sharpest 3
1.1 An evolving language 3

A helpful type system at large and small scales 4 ■ Ever more
concise code 6 ■ Simple data access with LINQ 9
Asynchrony 10 ■ Balancing efficiency and complexity 11
Evolution at speed: Using minor versions 12

1.2 An evolving platform 13
1.3 An evolving community 14
1.4 An evolving book 15

Mixed-level coverage 16 ■ Examples using Noda Time 16
Terminology choices 17

CONTENTSviii

PART 2 C# 2–5 .. 19

2 C# 2 21
2.1 Generics 22

Introduction by example: Collections before generics 22
Generics save the day 25 ■ What can be generic? 29
Type inference for type arguments to methods 30 ■ Type
constraints 32 ■ The default and typeof operators 34
Generic type initialization and state 37

2.2 Nullable value types 38
Aim: Expressing an absence of information 39 ■ CLR and
framework support: The Nullable<T> struct 40 ■ Language
support 43

2.3 Simplified delegate creation 49
Method group conversions 50 ■ Anonymous methods 50
Delegate compatibility 52

2.4 Iterators 53
Introduction to iterators 54 ■ Lazy execution 55 ■ Evaluation
of yield statements 56 ■ The importance of being lazy 57
Evaluation of finally blocks 58 ■ The importance of finally
handling 61 ■ Implementation sketch 62

2.5 Minor features 66
Partial types 67 ■ Static classes 69 ■ Separate getter/setter
access for properties 69 ■ Namespace aliases 70
Pragma directives 72 ■ Fixed-size buffers 73
InternalsVisibleTo 73

3 C# 3: LINQ and everything that comes with it 75
3.1 Automatically implemented properties 76
3.2 Implicit typing 77

Typing terminology 77 ■ Implicitly typed local variables
(var) 78 ■ Implicitly typed arrays 79

3.3 Object and collection initializers 81
Introduction to object and collection initializers 81
Object initializers 83 ■ Collection initializers 84
The benefits of single expressions for initialization 86

3.4 Anonymous types 86
Syntax and basic behavior 86 ■ The compiler-generated
type 89 ■ Limitations 90

CONTENTS ix

3.5 Lambda expressions 91
Lambda expression syntax 92 ■ Capturing variables 94
Expression trees 101

3.6 Extension methods 103
Declaring an extension method 103 ■ Invoking an extension
method 104 ■ Chaining method calls 106

3.7 Query expressions 107
Query expressions translate from C# to C# 108 ■ Range
variables and transparent identifiers 108 ■ Deciding when
to use which syntax for LINQ 110

3.8 The end result: LINQ 111

4 C# 4: Improving interoperability 113
4.1 Dynamic typing 114

Introduction to dynamic typing 114 ■ Dynamic behavior
beyond reflection 119 ■ A brief look behind the scenes 124
Limitations and surprises in dynamic typing 127 ■ Usage
suggestions 131

4.2 Optional parameters and named arguments 133
Parameters with default values and arguments with names 134
Determining the meaning of a method call 135 ■ Impact on
versioning 137

4.3 COM interoperability improvements 138
Linking primary interop assemblies 139 ■ Optional parameters
in COM 140 ■ Named indexers 142

4.4 Generic variance 143
Simple examples of variance in action 143 ■ Syntax for
variance in interface and delegate declarations 144
Restrictions on using variance 145 ■ Generic variance in
practice 147

5 Writing asynchronous code 150
5.1 Introducing asynchronous functions 152

First encounters of the asynchronous kind 152 ■ Breaking
down the first example 154

5.2 Thinking about asynchrony 155
Fundamentals of asynchronous execution 155 ■ Synchronization
contexts 157 ■ Modeling asynchronous methods 158

CONTENTSx

5.3 Async method declarations 160
Return types from async methods 161 ■ Parameters in async
methods 162

5.4 Await expressions 162
The awaitable pattern 163 ■ Restrictions on await
expressions 165

5.5 Wrapping of return values 166
5.6 Asynchronous method flow 168

What is awaited and when? 168 ■ Evaluation of await
expressions 169 ■ The use of awaitable pattern members 173
Exception unwrapping 174 ■ Method completion 176

5.7 Asynchronous anonymous functions 180
5.8 Custom task types in C# 7 182

The 99.9% case: ValueTask<TResult> 182 ■ The 0.1% case:
Building your own custom task type 184

5.9 Async main methods in C# 7.1 186
5.10 Usage tips 187

Avoid context capture by using ConfigureAwait (where
appropriate) 187 ■ Enable parallelism by starting multiple
independent tasks 189 ■ Avoid mixing synchronous and
asynchronous code 190 ■ Allow cancellation wherever
possible 190 ■ Testing asynchrony 191

6 Async implementation 193
6.1 Structure of the generated code 195

The stub method: Preparation and taking the first step 198
Structure of the state machine 199 ■ The MoveNext() method
(high level) 202 ■ The SetStateMachine method and the state
machine boxing dance 204

6.2 A simple MoveNext() implementation 205
A full concrete example 205 ■ MoveNext() method general
structure 207 ■ Zooming into an await expression 209

6.3 How control flow affects MoveNext() 210
Control flow between await expressions is simple 211
Awaiting within a loop 212 ■ Awaiting within a try/finally
block 213

6.4 Execution contexts and flow 216
6.5 Custom task types revisited 218

CONTENTS xi

7 C# 5 bonus features 220
7.1 Capturing variables in foreach loops 220
7.2 Caller information attributes 222

Basic behavior 222 ■ Logging 224 ■ Simplifying
INotifyPropertyChanged implementations 224 ■ Corner cases of
caller information attributes 226 ■ Using caller information
attributes with old versions of .NET 232

PART 3 C# 6 .. 233

8 Super-sleek properties and expression-bodied members 235
8.1 A brief history of properties 236
8.2 Upgrades to automatically implemented properties 238

Read-only automatically implemented properties 238
Initializing automatically implemented properties 239
Automatically implemented properties in structs 240

8.3 Expression-bodied members 242
Even simpler read-only computed properties 242 ■ Expression-
bodied methods, indexers, and operators 245 ■ Restrictions on
expression-bodied members in C# 6 247 ■ Guidelines for using
expression-bodied members 249

9 Stringy features 252
9.1 A recap on string formatting in .NET 253

Simple string formatting 253 ■ Custom formatting with format
strings 253 ■ Localization 255

9.2 Introducing interpolated string literals 258
Simple interpolation 258 ■ Format strings in interpolated string
literals 259 ■ Interpolated verbatim string literals 259
Compiler handling of interpolated string literals (part 1) 261

9.3 Localization using FormattableString 261
Compiler handling of interpolated string literals (part 2) 262
Formatting a FormattableString in a specific culture 263
Other uses for FormattableString 265 ■ Using FormattableString
with older versions of .NET 268

9.4 Uses, guidelines, and limitations 270
Developers and machines, but maybe not end users 270
Hard limitations of interpolated string literals 272 ■ When you
can but really shouldn’t 273

CONTENTSxii

9.5 Accessing identifiers with nameof 275
First examples of nameof 275 ■ Common uses of nameof 277
Tricks and traps when using nameof 280

10 A smörgåsbord of features for concise code 284
10.1 Using static directives 284

Importing static members 285 ■ Extension methods and using
static 288

10.2 Object and collection initializer enhancements 290
Indexers in object initializers 291 ■ Using extension methods in
collection initializers 294 ■ Test code vs. production code 298

10.3 The null conditional operator 299
Simple and safe property dereferencing 299 ■ The null conditional
operator in more detail 300 ■ Handling Boolean
comparisons 301 ■ Indexers and the null conditional
operator 302 ■ Working effectively with the null conditional
operator 303 ■ Limitations of the null conditional operator 305

10.4 Exception filters 305
Syntax and semantics of exception filters 306 ■ Retrying
operations 311 ■ Logging as a side effect 312 ■ Individual,
case-specific exception filters 313 ■ Why not just throw? 314

PART 4 C# 7 AND BEYOND 317

11 Composition using tuples 319
11.1 Introduction to tuples 320
11.2 Tuple literals and tuple types 321

Syntax 321 ■ Inferred element names for tuple literals
(C# 7.1) 323 ■ Tuples as bags of variables 324

11.3 Tuple types and conversions 329
Types of tuple literals 329 ■ Conversions from tuple literals to tuple
types 330 ■ Conversions between tuple types 334 ■ Uses of
conversions 336 ■ Element name checking in inheritance 336
Equality and inequality operators (C# 7.3) 337

11.4 Tuples in the CLR 338
Introducing System.ValueTuple<...> 338 ■ Element name
handling 339 ■ Tuple conversion implementations 341
String representations of tuples 341 ■ Regular equality and
ordering comparisons 342 ■ Structural equality and ordering

CONTENTS xiii

comparisons 343 ■ Womples and large tuples 345 ■ The
nongeneric ValueTuple struct 346 ■ Extension methods 346

11.5 Alternatives to tuples 346
System.Tuple<...> 347 ■ Anonymous types 347
Named types 348

11.6 Uses and recommendations 348
Nonpublic APIs and easily changed code 348 ■ Local
variables 349 ■ Fields 350 ■ Tuples and dynamic don’t play
together nicely 351

12 Deconstruction and pattern matching 353
12.1 Deconstruction of tuples 354

Deconstruction to new variables 355 ■ Deconstruction
assignments to existing variables and properties 357
Details of tuple literal deconstruction 361

12.2 Deconstruction of nontuple types 361
Instance deconstruction methods 362 ■ Extension deconstruction
methods and overloading 363 ■ Compiler handling of Deconstruct
calls 364

12.3 Introduction to pattern matching 365
12.4 Patterns available in C# 7.0 367

Constant patterns 367 ■ Type patterns 368 ■ The var
pattern 371

12.5 Using patterns with the is operator 372
12.6 Using patterns with switch statements 374

Guard clauses 375 ■ Pattern variable scope for case
labels 376 ■ Evaluation order of pattern-based switch
statements 377

12.7 Thoughts on usage 379
Spotting deconstruction opportunities 379 ■ Spotting pattern
matching opportunities 380

13 Improving efficiency with more pass by reference 381
13.1 Recap: What do you know about ref? 382
13.2 Ref locals and ref returns 385

Ref locals 385 ■ Ref returns 390 ■ The conditional ?: operator
and ref values (C# 7.2) 392 ■ Ref readonly (C# 7.2) 393

13.3 in parameters (C# 7.2) 395

CONTENTSxiv

Compatibility considerations 396 ■ The surprising mutability of
in parameters: External changes 397 ■ Overloading with in
parameters 398 ■ Guidance for in parameters 399

13.4 Declaring structs as readonly (C# 7.2) 401
Background: Implicit copying with read-only variables 401
The readonly modifier for structs 403 ■ XML serialization is
implicitly read-write 404

13.5 Extension methods with ref or in parameters
(C# 7.2) 405

Using ref/in parameters in extension methods to avoid copying 405
Restrictions on ref and in extension methods 407

13.6 Ref-like structs (C# 7.2) 408
Rules for ref-like structs 409 ■ Span<T> and stackalloc 410
IL representation of ref-like structs 414

14 Concise code in C# 7 415
14.1 Local methods 415

Variable access within local methods 417 ■ Local method
implementations 420 ■ Usage guidelines 425

14.2 Out variables 427
Inline variable declarations for out parameters 427 ■ Restrictions
lifted in C# 7.3 for out variables and pattern variables 428

14.3 Improvements to numeric literals 429
Binary integer literals 429 ■ Underscore separators 430

14.4 Throw expressions 431
14.5 Default literals (C# 7.1) 432
14.6 Nontrailing named arguments (C# 7.2) 433
14.7 Private protected access (C# 7.2) 435
14.8 Minor improvements in C# 7.3 435

Generic type constraints 435 ■ Overload resolution
improvements 436 ■ Attributes for fields backing automatically
implemented properties 437

15 C# 8 and beyond 439
15.1 Nullable reference types 440

What problem do nullable reference types solve? 440 ■ Changing
the meaning when using reference types 441 ■ Enter nullable
reference types 442 ■ Nullable reference types at compile time and

CONTENTS xv

execution time 443 ■ The damn it or bang operator 445
Experiences of nullable reference type migration 447
Future improvements 449

15.2 Switch expressions 453
15.3 Recursive pattern matching 455

Matching properties in patterns 455 ■ Deconstruction
patterns 456 ■ Omitting types from patterns 457

15.4 Indexes and ranges 458
Index and Range types and literals 458 ■ Applying indexes and
ranges 459

15.5 More async integration 461
Asynchronous resource disposal with using await 461
Asynchronous iteration with foreach await 462 ■ Asynchronous
iterators 465

15.6 Features not yet in preview 466
Default interface methods 466 ■ Record types 468
Even more features in brief 469

15.7 Getting involved 470

appendix Language features by version 473

index 479

CONTENTSxvi

xvii

foreword
Ten years is a long stretch of time for a human, and it’s an absolute eternity for a tech-
nical book aimed at professional programmers. It was with some astonishment, then,
that I realized 10 years have passed since Microsoft shipped C# 3.0 with Visual Studio
2008 and since I read the drafts of the first edition of this book. It has also been 10
years since Jon joined Stack Overflow and quickly became the user with the highest
reputation.

 C# was already a large, complex language in 2008, and the design and implemen-
tation teams haven’t been idle for the last decade. I’m thrilled with how C# has been
innovative in meeting the needs of many different developer constituencies, from
video games to websites to low-level, highly robust system components. C# takes the
best from academic research and marries it to practical techniques for solving real
problems. It’s not dogmatic; the C# designers don’t ask “What’s the most object-
oriented way to design this feature?” or “What’s the most functional way to design this
feature?” but rather “What’s the most pragmatic, safe, and effective way to design this
feature?” Jon gets all of that. He doesn’t just explain how the language works; he
explains how the whole thing holds together as a unified design and also points out
when it doesn’t.

 I said in my foreword to the first edition that Jon is enthusiastic, knowledgeable,
talented, curious, analytical, and a great teacher, and all of that is still true. Let me add
to that list by noting his perseverance and dedication. Writing a book is a huge job,
particularly when you do it in your spare time. Going back and revising that book to
keep it fresh and current is just as much work, and this is the third time Jon has done
that with this book. A lesser author would be content to tweak it here and there or add

FOREWORDxviii

a chapter about new materials; this is more like a large-scale refactoring. The results
speak for themselves.

 More than ever, I can’t wait to find out what great things the next generation of
programmers will do with C# as it continues to evolve and grow. I hope you enjoy this
book as much as I have over the years, and thanks for choosing to compose your pro-
grams in C#.

 ERIC LIPPERT

 SOFTWARE ENGINEER

 FACEBOOK

xix

preface
Welcome to the fourth edition of C# in Depth. When I wrote the first edition, I had lit-
tle idea I’d be writing a fourth edition of the same title 10 years later. Now, it wouldn’t
surprise me to find myself writing another edition in 10 years. Since the first edition,
the designers of the C# language have repeatedly proved that they’re dedicated to
evolving the language for as long as the industry is interested in it.

 This is important, because the industry has changed a lot in the last 10 years. As a
reminder, both the mobile ecosystem (as we know it today) and cloud computing
were still in their infancy in 2008. Amazon EC2 was launched in 2006, and Google
AppEngine was launched in 2008. Xamarin was launched by the Mono team in 2011.
Docker didn’t show up until 2013.

 For many .NET developers, the really big change in our part of the computing
world over the last few years has been .NET Core. It’s a cross-platform, open source
version of the framework that is explicitly designed for compatibility with other frame-
works (via .NET Standard). Its existence is enough to raise eyebrows; that it is Micro-
soft’s primary area of investment in .NET is even more surprising.

 Through all of this, C# is still the primary language when targeting anything like
.NET, whether that’s .NET, .NET Core, Xamarin, or Unity. F# is a healthy and friendly
competitor, but it doesn’t have the industry mindshare of C#.

 I’ve personally been developing in C# since around 2002, either professionally or
as an enthusiastic amateur. As the years have gone by, I’ve been sucked ever deeper
into the details of the language. I enjoy those details for their own sake but, more
importantly, for the sake of ever-increasing productivity when writing code in C#. I
hope that some of that enjoyment has seeped into this book and will encourage you
further in your travels with C#.

xx

acknowledgments
It takes a lot of work and energy to create a book. Some of that is obvious; after all,
pages don’t just write themselves. That’s just the tip of the iceberg, though. If you
received the first version of the content I wrote with no editing, no review, no profes-
sional typesetting, and so on, I suspect you’d be pretty disappointed.

 As with previous editions, it’s been a pleasure working with the team at Manning.
Richard Wattenberger has provided guidance and suggestions with just the right com-
bination of insistence and understanding, thereby shaping the content through multi-
ple iterations. (In particular, working out the best approach to use for C# 2–4 proved
surprisingly challenging.) I would also like to thank Mike Stephens and Marjan Bace
for supporting this edition from the start.

 Beyond the structure of the book, the review process is crucial to keeping the con-
tent accurate and clear. Ivan Martinovic organized the peer reviewing process and
obtained great feedback from Ajay Bhosale, Andrei Rînea, Andy Kirsch, Brian Ras-
mussen, Chris Heneghan, Christos Paisios, Dmytro Lypai, Ernesto Cardenas, Gary
Hubbard, Jassel Holguin Calderon, Jeremy Lange, John Meyer, Jose Luis Perez Vila,
Karl Metivier, Meredith Godar, Michal Paszkiewicz, Mikkel Arentoft, Nelson Ferrari,
Prajwal Khanal, Rami Abdelwahed, and Willem van Ketwicha. I’m indebted to Dennis
Sellinger for his technical editing and to Eric Lippert for technical proofreading. I
want to highlight Eric’s contributions to every edition of this book, which have always
gone well beyond technical corrections. His insight, experience, and humor have
been significant and unexpected bonuses throughout the whole process.

 Content is one thing; good-looking content is another. Lori Weidert managed the
complex production process with dedication and understanding. Sharon Wilkey per-
formed copyediting with skill and the utmost patience. The typesetting and cover

ACKNOWLEDGMENTS xxi

design were done by Marija Tudor, and I can’t express what a joy it is to see the first
typeset pages; it’s much like the first (successful) dress rehearsal of a play you’ve been
working on for months.

 Beyond the people who’ve contributed directly to the book, I naturally need to
thank my family for continuing to put up with me over the last few years. I love my
family. They rock, and I’m grateful.

 Finally, none of this would matter if no one wanted to read the book. Thank you
for your interest, and I hope your investment of time into this book pays off.

xxii

about this book
Who should read this book

This book is about the language of C#. That often means going into some details of the
runtime responsible for executing your code and the libraries that support your appli-
cation, but the focus is firmly on the language itself.

 The goal of the book is to make you as comfortable as possible with C# so you
never need to feel you’re fighting against it. I want to help you feel you are fluent in
C#, with the associated connotations of working in a fluid and flowing way. Think of
C# as a river in which you’re paddling a kayak. The better you know the river, the
faster you’ll be able to travel with its flow. Occasionally, you’ll want to paddle upstream
for some reason; even then, knowing how the river moves will make it easier to reach
your target without capsizing.

 If you’re an existing C# programmer who wants to know more about the language,
this book is for you! You don’t need to be an expert to read this book, but I assume
you know the basics of C# 1. I explain all the terminology I use that was introduced
after C# 1 and some older terms that are often misunderstood (such as parameters
and arguments), but I assume you know what a class is, what an object is, and so on.

 If you are an expert already, you may still find the book useful because it provides
different ways of thinking about concepts that are already familiar to you. You may
also discover areas of the language you were unaware of; I know that’s been my experi-
ence in writing the book.

 If you’re completely new to C#, this book may not be useful to you yet. There are a
lot of introductory books and online tutorials on C#. Once you have a grip on the
basics, I hope you’ll return here and dive deeper.

ABOUT THIS BOOK xxiii

How this book is organized: A roadmap

This book comprises 15 chapters divided into 4 parts. Part 1 provides a brief history of
the language.

 Chapter 1 gives an overview of how C# has changed over the years and how it is
still changing. It puts C# into a broader context of platforms and communities
and gives a little more detail about how I present material in the rest of the
book.

Part 2 describes C# versions 2 through 5. This is effectively a rewritten and condensed
form of the third edition of this book.

 Chapter 2 demonstrates the wide variety of features introduced in C# 2, includ-
ing generics, nullable value types, anonymous methods, and iterators.

 Chapter 3 explains how the features of C# 3 come together to form LINQ. The
most prominent features in this chapter are lambda expressions, anonymous
types, object initializers, and query expressions.

 Chapter 4 describes the features of C# 4. The largest change within C# 4 was the
introduction of dynamic typing, but there are other changes around optional
parameters, named arguments, generic variance, and reducing friction when
working with COM.

 Chapter 5 begins the coverage of C# 5’s primary feature: async/await. This
chapter describes how you’ll use async/await but has relatively little detail about
how it works behind the scenes. Enhancements to asynchrony introduced in
later versions of C# are described here as well, including custom task types and
async main methods.

 Chapter 6 completes the async/await coverage by going deep into the details of
how the compiler handles asynchronous methods by creating state machines.

 Chapter 7 is a short discussion of the few features introduced in C# 5 besides
async/await. After the all the details provided in chapter 6, you can consider it a
palette cleanser before moving on to the next part of the book.

Part 3 describes C# 6 in detail.

 Chapter 8 shows expression-bodied members, which allow you to remove some
of the tedious syntax when declaring very simple properties and methods.
Improvements to automatically implemented properties are described here,
too. It’s all about streamlining your source code.

 Chapter 9 describes the string-related features of C# 6: interpolated string liter-
als and the nameof operator. Although both features are just new ways of pro-
ducing strings, they are among the most handy aspects of C# 6.

 Chapter 10 introduces the remaining features of C# 6. These have no particu-
larly common theme other than helping you write concise source code. Of the

ABOUT THIS BOOKxxiv

features introduced here, the null conditional operator is probably the most
useful; it’s a clean way of short-circuiting expressions that might involve null val-
ues, thereby avoiding the dreaded NullReferenceException.

Part 4 addresses C# 7 (all the way up to C# 7.3) and completes the book by peering a
short distance into the future.

 Chapter 11 demonstrates the integration of tuples into the language and
describes the ValueTuple family of types that is used for the implementation.

 Chapter 12 introduces deconstruction and pattern matching. These are both
concise ways of looking at an existing value in a different way. In particular, pat-
tern matching in switch statements can simplify how you handle different types
of values in situations where inheritance doesn’t quite fit.

 Chapter 13 focuses on pass by reference and related features. Although ref
parameters have been present in C# since the very first version, C# 7 introduces
a raft of new features such as ref returns and ref locals. These are primarily
aimed at improving efficiency by reducing copying.

 Chapter 14 completes the C# 7 coverage with another set of small features that
all contribute to streamlining your code. Of these, my personal favorites are
local methods, out variables, and the default literal, but there are other little
gems to discover, too.

 Chapter 15 looks at the future of C#. Working with the C# 8 preview available at
the time of this writing, I delve into nullable reference types, switch expressions,
and pattern matching enhancements as well as ranges and further integration
of asynchrony into core language features. This entire chapter is speculative,
but I hope it will spark your curiosity.

Finally, the appendix provides a handy reference for which features were introduced
in which version of C# and whether they have runtime or framework requirements
that restrict the contexts in which you can use them.

 My expectation is that this book will be read in a linear fashion (at least the first
time). Later chapters build on earlier ones, and you may have a hard time if you try to
read them out of order. After you’ve read the book once, however, it makes perfect
sense to use it as a reference. You might go back to a topic when you need a reminder
of some syntax or if you find yourself caring more about a specific detail than you did
on your first reading.

About the code

This book contains many examples of source code in numbered listings and in line
with normal text. In both cases, source code is formatted in a fixed-width font like
this to separate it from ordinary text. Sometimes it appears in bold to highlight code
that has changed from previous steps in the chapter, such as when a new feature adds
to an existing line of code.

ABOUT THIS BOOK xxv

 In many cases, the original source code has been reformatted; I’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, listings include line-continuation markers (➥). In addition, com-
ments in the source code have often been removed from the listings when the code is
described in the text. Code annotations accompany many of the listings and highlight
important concepts.

 Source code for the examples in this book is available for download from the pub-
lisher’s website at www.manning.com/books/c-sharp-in-depth-fourth-edition. You’ll
need the .NET Core SDK (version 2.1.300 or higher) installed to build the examples.
A few examples require the Windows desktop .NET framework (where Windows
Forms or COM is involved), but most are portable via .NET Core. Although I used
Visual Studio 2017 (Community Edition) to develop the examples, they should be
fine under Visual Studio Code as well.

Book forum

Purchase of C# in Depth, Fourth Edition, includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask tech-
nical questions, and receive help from the author and from other users. To access the
forum, go to https://forums.manning.com/forums/c-sharp-in-depth-fourth-edition.
You can also learn more about Manning’s forums and the rules of conduct at
https://forums.manning.com/forums /about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources

There are many, many resources for C# online. The ones I find most useful are listed
below, but you’ll find a lot more by searching, too.

 Microsoft .NET documentation: https://docs.microsoft.com/dotnet
 The .NET API documentation: https://docs.microsoft.com/dotnet/api
 The C# language design repository: https://github.com/dotnet/csharplang
 The Roslyn repository: https://github.com/dotnet/roslyn
 The C# ECMA standard:

www.ecma-international.org/publications/standards/Ecma-334.htm
 Stack Overflow: https://stackoverflow.com

https://forums.manning.com/forums/c-sharp-in-depth-fourth-edition
http://www.manning.com/books/c-sharp-in-depth-fourth-edition
https://forums.manning.com/forums/about
https://stackoverflow.com
https://www.ecma-international.org/publications/standards/Ecma-334.htm
https://github.com/dotnet/roslyn
https://github.com/dotnet/csharplang
https://docs.microsoft.com/dotnet/api
https://docs.microsoft.com/dotnet

xxvi

about the author
My name is Jon Skeet. I’m a staff software engineer at Google, and I work from the
London office. Currently, my role is to provide .NET client libraries for Google Cloud
Platform, which neatly combines my enthusiasm for working at Google with my love of
C#. I’m the convener of the ECMA technical group responsible for standardizing C#,
and I represent Google within the .NET Foundation.

 I’m probably best known for my contributions on Stack Overflow, which is a ques-
tion-and-answer site for developers. I also enjoy speaking at conferences and user
groups and blogging. The common factor here is interacting with other developers;
it’s the way I learn best.

 Slightly more unusually, I’m a date and time hobbyist. This is mostly expressed
through my work on Noda Time, which is the date and time library for .NET that
you’ll see used in several examples in this book. Even without the hands-on coding
aspect, time is a fascinating topic with an abundance of trivia. Find me at a conference
and I’ll bore you for as long as you like about time zones and calendar systems.

 My editors would like you to know most of these things to prove that I’m qualified
to write this book, but please don’t mistake them for a claim of infallibility. Humility is
a vital part of being an effective software engineer, and I screw up just like everyone
else does. Compilers don’t tend to view appeals to authority in a favorable light.

 In the book, I’ve tried to make it clear where I’m expressing what I believe to be
objective facts about the C# language and where I’m expressing my opinion. Due to
diligent technical reviewers, I hope there are relatively few mistakes on the objective
side, but experience from previous editions suggests that some errors will have crept
through. When it comes to opinions, mine may be wildly different from yours, and
that’s fine. Take what you find useful, and feel free to ignore the rest.

xxvii

about the cover illustration
The caption for the illustration on the cover of C# in Depth, Fourth Edition, is “Musi-
cian.” The illustration is taken from a collection of costumes of the Ottoman Empire
published on January 1, 1802, by William Miller of Old Bond Street, London. The title
page is missing from the collection, and we have been unable to track it down to date.
The book’s table of contents identifies the figures in both English and French, and
each illustration bears the names of two artists who worked on it, both of whom would
no doubt be surprised to find their art gracing the front cover of a computer program-
ming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market
in the “Garage” on West 26th Street in Manhattan. The seller was an American based
in Ankara, Turkey, and the transaction took place just as he was packing up his stand
for the day. The Manning editor didn’t have on his person the substantial amount of
cash that was required for the purchase, and a credit card and check were both
politely turned down. With the seller flying back to Ankara that evening, the situation
was getting hopeless. What was the solution? It turned out to be nothing more than an
old-fashioned verbal agreement sealed with a handshake. The seller simply proposed
that the money be transferred to him by wire, and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, he transferred the funds the next day, and he remains grateful and impressed
by this unknown person’s trust. It recalls something that might have happened a long
time ago.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago brought back to life by the pictures from this collection.

ABOUT THE COVER ILLUSTRATIONxxviii

Part 1

C# in context

When I was studying computer science at university, a fellow student cor-
rected the lecturer about a detail he’d written on the blackboard. The lecturer
looked mildly exasperated and answered, “Yes, I know. I was simplifying. I’m
obscuring the truth here to demonstrate a bigger truth.” Although I hope I’m
not obscuring much in part 1, it’s definitely about the bigger truth.

 Most of this book looks at C# close up, occasionally putting it under a micro-
scope to see the finest details. Before we start doing that, chapter 1 pulls back
the lens to see the broader sweep of the history of C# and how C# fits into the
wider context of computing.

 You’ll see some code as an appetizer before I serve the main course of the
rest of the book, but the details don’t matter at this stage. This part is more
about the ideas and themes of C#’s development to get you in the best frame of
mind to appreciate how those ideas are implemented.

 Let’s go!

2 CHAPTER

3

Survival of the sharpest

Choosing the most interesting aspects of C# to introduce here was difficult. Some
are fascinating but are rarely used. Others are incredibly important but are now
commonplace to C# developers. Features such as async/await are great in many
ways but are hard to describe briefly. Without further ado, let’s look at how far C#
has come over time.

1.1 An evolving language
In previous editions of this book, I provided a single example that showed the evo-
lution of the language over the versions covered by that edition. That’s no longer
feasible in a way that would be interesting to read. Although a large application

This chapter covers
 How C#’s rapid evolution has made developers more

productive

 Selecting minor versions of C# to use the latest features

 Being able to run C# in more environments

 Benefitting from an open and engaged community

 The book’s focus on old and new C# versions

4 CHAPTER 1 Survival of the sharpest

may use almost all of the new features, any single piece of code that’s suitable for the
printed page would use only a subset of them.

 Instead, in this section I choose what I consider to be the most important themes
of C# evolution and give brief examples of improvements. This is far from an exhaus-
tive list of features. It’s also not intended to teach you the features; instead, it’s a
reminder of how far features you already know about have improved the language
and a tease for features you may not have seen yet.

 If you think some of these features imitate other languages you’re familiar with,
you’re almost certainly right. The C# team does not hesitate to take great ideas from
other languages and reshape them to feel at home within C#. This is a great thing! F#
is particularly worth mentioning as a source of inspiration for many C# features.

NOTE It’s possible that F#’s greatest impact isn’t what it enables for F# devel-
opers but its influence on C#. This isn’t to underplay the value of F# as a lan-
guage in its own right or to suggest that it shouldn’t be used directly. But
currently, the C# community is significantly larger than the F# community,
and the C# community owes a debt of gratitude to F# for inspiring the
C# team.

Let’s start with one of the most important aspects of C#: its type system.

1.1.1 A helpful type system at large and small scales

C# has been a statically typed language from the start: your code specifies the types of
variables, parameters, values returned from methods, and so on. The more precisely
you can specify the shape of the data your code accepts and returns, the more the
compiler can help you avoid mistakes.

 That’s particularly true as the application you’re building grows. If you can see all
the code for your whole program on one screen (or at least hold it all in your head at
one time), a statically typed language doesn’t have much benefit. As the scale
increases, it becomes increasingly important that your code concisely and effectively
communicates what it does. You can do that through documentation, but static typing
lets you communicate in a machine-readable way.

 As C# has evolved, its type system has allowed more fine-grained descriptions. The
most obvious example of this is generics. In C# 1, you might have had code like this:

public class Bookshelf
{
 public IEnumerable Books { get { ... } }
}

What type is each item in the Books sequence? The type system doesn’t tell you. With
generics in C# 2, you can communicate more effectively:

public class Bookshelf
{
 public IEnumerable<Book> Books { get { ... } }
}

5An evolving language

C# 2 also brought nullable value types, thereby allowing the absence of information to
be expressed effectively without resorting to magic values such as –1 for a collection
index or DateTime.MinValue for a date.

 C# 7 gave us the ability to tell the compiler that a user-defined struct should be
immutable using readonly struct declarations. The primary goal for this feature
may have been to improve the efficiency of the code generated by the compiler, but it
has additional benefits for communicating intent.

 The plans for C# 8 include nullable reference types, which will allow even more com-
munication. Up to this point, nothing in the language lets you express whether a ref-
erence (either as a return value, a parameter, or just a local variable) might be null. This
leads to error-prone code if you’re not careful and boilerplate validation code if you are
careful, neither of which is ideal. C# 8 will expect that anything not explicitly nullable
is intended not to be nullable. For example, consider a method declaration like this:

string Method(string x, string? y)

The parameter types indicate that the argument corresponding to x shouldn’t be null
but that the argument corresponding to y may be null. The return type indicates that
the method won’t return null.

 Other changes to the type system in C# are aimed at a smaller scale and focus on
how one method might be implemented rather than how different components in a
large system relate to each other. C# 3 introduced anonymous types and implicitly typed
local variables (var). These help address the downside of some statically typed lan-
guages: verbosity. If you need a particular data shape within a single method but
nowhere else, creating a whole extra type just for the sake of that method is overkill.
Anonymous types allow that data shape to be expressed concisely without losing the
benefits of static typing:

var book = new { Title = "Lost in the Snow", Author = "Holly Webb" };
string title = book.Title;
string author = book.Author;

Anonymous types are primarily used within LINQ queries, but the principle of creat-
ing a type just for a single method doesn’t depend on LINQ.

 Similarly, it seems redundant to explicitly specify the type of a variable that is ini-
tialized in the same statement by calling the constructor of that type. I know which of
the following declarations I find cleaner:

Dictionary<string, string> map1 = new Dictionary<string, string>();

var map2 = new Dictionary<string, string>();

Although implicit typing is necessary when working with anonymous types, I’ve found
it increasingly useful when working with regular types, too. It’s important to distinguish

Name and type are still
checked by the compiler

Explicit typing

Implicit typing

6 CHAPTER 1 Survival of the sharpest

between implicit typing and dynamic typing. The preceding map2 variable is still stati-
cally typed, but you didn’t have to write the type explicitly.

 Anonymous types help only within a single block of code; for example, you can’t
use them as method parameters or return types. C# 7 introduced tuples: value types
that effectively act to collect variables together. The framework support for these
tuples is relatively simple, but additional language support allows the elements of
tuples to be named. For example, instead of the preceding anonymous type, you
could use the following:

var book = (title: "Lost in the Snow", author: "Holly Webb");
Console.WriteLine(book.title);

Tuples can replace anonymous types in some cases but certainly not all. One of their
benefits is that they can be used as method parameters and return types. At the
moment, I advise that these be kept within the internal API of a program rather than
exposed publicly, because tuples represent a simple composition of values rather than
encapsulating them. That’s why I still regard them as contributing to simpler code at
the implementation level rather than improving overall program design.

 I should mention a feature that might come in C# 8: record types. I think of these as
named anonymous types to some extent, at least in their simplest form. They’d pro-
vide the benefits of anonymous types in terms of removing boilerplate code but then
allow those types to gain extra behavior just as regular classes do. Watch this space!

1.1.2 Ever more concise code

One of the recurring themes within new features of C# has been the ability to let you
express your ideas in ways that are increasingly concise. The type system is part of this,
as you’ve seen with anonymous types, but many other features also contribute to this.
There are lots of words you might hear for this, especially in terms of what can be
removed with the new features in place. C#’s features allow you to reduce ceremony,
remove boilerplate code, and avoid cruft. These are just different ways of talking about
the same effect. It’s not that any of the now-redundant code was wrong; it was just dis-
tracting and unnecessary. Let’s look at a few ways that C# has evolved in this respect.

CONSTRUCTION AND INITIALIZATION

First, we’ll consider how you create and initialize objects. Delegates have probably
evolved the most and in multiple stages. In C# 1, you had to write a separate method
for the delegate to refer to and then create the delegate itself in a long-winded way.
For example, here’s what you’d write to subscribe a new event handler to a button’s
Click event in C# 1:

button.Click += new EventHandler(HandleButtonClick);

C# 2 introduced method group conversions and anonymous methods. If you wanted to keep
the HandleButtonClick method, method group conversions would allow you to
change the preceding code to the following:

button.Click += HandleButtonClick;

C# 1

C# 2

7An evolving language

If your click handler is simple, you might not want to bother with a separate method
at all and instead use an anonymous method:

button.Click += delegate { MessageBox.Show("Clicked!"); };

Anonymous methods have the additional benefit of acting as closures: they can use
local variables in the context within which they’re created. They’re not used often in
modern C# code, however, because C# 3 provided us with lambda expressions, which
have almost all the benefits of anonymous methods but shorter syntax:

button.Click += (sender, args) => MessageBox.Show("Clicked!");

NOTE In this case, the lambda expression is longer than the anonymous
method because the anonymous method uses the one feature that lambda
expressions don’t have: the ability to ignore parameters by not providing a
parameter list.

I used event handlers as an example for delegates because that was their main use in
C# 1. In later versions of C#, delegates are used in more varied situations, particularly
in LINQ.

 LINQ also brought other benefits for initialization in the form of object initializers
and collection initializers. These allow you to specify a set of properties to set on a new
object or items to add to a new collection within a single expression. It’s simpler to
show than describe, and I’ll borrow an example from chapter 3. Consider code that
you might previously have written like this:

var customer = new Customer();
customer.Name = "Jon";
customer.Address = "UK";
var item1 = new OrderItem();
item1.ItemId = "abcd123";
item1.Quantity = 1;
var item2 = new OrderItem();
item2.ItemId = "fghi456";
item2.Quantity = 2;
var order = new Order();
order.OrderId = "xyz";
order.Customer = customer;
order.Items.Add(item1);
order.Items.Add(item2);

The object and collection initializers introduced in C# 3 make this so much clearer:

var order = new Order
{
 OrderId = "xyz",
 Customer = new Customer { Name = "Jon", Address = "UK" },
 Items =
 {
 new OrderItem { ItemId = "abcd123", Quantity = 1 },
 new OrderItem { ItemId = "fghi456", Quantity = 2 }
 }
};

C# 2

C# 3

8 CHAPTER 1 Survival of the sharpest

I don’t suggest reading either of these examples in detail; what’s important is the sim-
plicity of the second form over the first.

METHOD AND PROPERTY DECLARATIONS

One of the most obvious examples of simplification is through automatically implemented
properties. These were first introduced in C# 3 but have been further improved in later
versions. Consider a property that would’ve been implemented in C# 1 like this:

private string name;
public string Name
{
 get { return name; }
 set { name = value; }
}

Automatically implemented properties allow this to be written as a single line:

public string Name { get; set; }

Additionally, C# 6 introduced expression-bodied members that remove more ceremony.
Suppose you’re writing a class that wraps an existing collection of strings, and you
want to effectively delegate the Count and GetEnumerator() members of your class
to that collection. Prior to C# 6, you would’ve had to write something like this:

public int Count { get { return list.Count; } }

public IEnumerator<string> GetEnumerator()
{
 return list.GetEnumerator();
}

This is a strong example of ceremony: a lot of syntax that the language used to require
with little benefit. In C# 6, this is significantly cleaner. The => syntax (already used by
lambda expressions) is used to indicate an expression-bodied member:

public int Count => list.Count;

public IEnumerator<string> GetEnumerator() => list.GetEnumerator();

Although the value of using expression-bodied members is a personal and subjective
matter, I’ve been surprised by just how much difference they’ve made to the readabil-
ity of my code. I love them! Another feature I hadn’t expected to use as much as I now
do is string interpolation, which is one of the string-related improvements in C#.

STRING HANDLING

String handling in C# has had three significant improvements:

 C# 5 introduced caller information attributes, including the ability for the com-
piler to automatically populate method and filenames as parameter values. This
is great for diagnostic purposes, whether in permanent logging or more tempo-
rary testing.

9An evolving language

 C# 6 introduced the nameof operator, which allows names of variables, types,
methods, and other members to be represented in a refactoring-friendly form.

 C# 6 also introduced interpolated string literals. This isn’t a new concept, but it
makes constructing a string with dynamic values much simpler.

For the sake of brevity, I’ll demonstrate just the last point. It’s reasonably common to
want to construct a string with variables, properties, the result of method calls, and so
forth. This might be for logging purposes, user-oriented error messages (if localiza-
tion isn’t required), exception messages, and so forth.

 Here’s an example from my Noda Time project. Users can try to find a calendar
system by its ID, and the code throws a KeyNotFoundException if that ID doesn’t
exist. Prior to C# 6, the code might have looked like this:

throw new KeyNotFoundException(
 "No calendar system for ID " + id + " exists");

Using explicit string formatting, it looks like this:

throw new KeyNotFoundException(
 string.Format("No calendar system for ID {0} exists", id);

NOTE See section 1.4.2 for information about Noda Time. You don’t need to
know about it to understand this example.

In C# 6, the code becomes just a little simpler with an interpolated string literal to
include the value of id in the string directly:

throw new KeyNotFoundException($"No calendar system for ID {id} exists");

This doesn’t look like a big deal, but I’d hate to have to work without string interpola-
tion now.

 These are just the most prominent features that help improve the signal-to-noise
ratio of your code. I could’ve shown using static directives and the null condi-
tional operator in C# 6 as well as pattern matching, deconstruction, and out variables
in C# 7. Rather than expand this chapter to mention every feature in every version,
let’s move on to a feature that’s more revolutionary than evolutionary: LINQ.

1.1.3 Simple data access with LINQ

If you ask C# developers what they love about C#, they’ll likely mention LINQ. You’ve
already seen some of the features that build up to LINQ, but the most radical is query
expressions. Consider this code:

var offers =
 from product in db.Products
 where product.SalePrice <= product.Price / 2
 orderby product.SalePrice
 select new {
 product.Id, product.Description,
 product.SalePrice, product.Price
 };

10 CHAPTER 1 Survival of the sharpest

That doesn’t look anything like old-school C#. Imagine traveling back to 2007 to show
that code to a developer using C# 2 and then explaining that this has compile-time
checking and IntelliSense support and that it results in an efficient database query.
Oh, and that you can use the same syntax for regular collections as well.

 Support for querying out-of-process data is provided via expression trees. These rep-
resent code as data, and a LINQ provider can analyze the code to convert it into SQL
or other query languages. Although this is extremely cool, I rarely use it myself,
because I don’t work with SQL databases often. I do work with in-memory collections,
though, and I use LINQ all the time, whether through query expressions or method
calls with lambda expressions.

 LINQ didn’t just give C# developers new tools; it encouraged us to think about
data transformations in a new way based on functional programming. This affects
more than data access. LINQ provided the initial impetus to take on more functional
ideas, but many C# developers have embraced those ideas and taken them further.

 C# 4 made a radical change in terms of dynamic typing, but I don’t think that
affected as many developers as LINQ. Then C# 5 came along and changed the game
again, this time with respect to asynchrony.

1.1.4 Asynchrony

Asynchrony has been difficult in mainstream languages for a long time. More niche
languages have been created with asynchrony in mind from the start, and some func-
tional languages have made it relatively easy as just one of the things they handle
neatly. But C# 5 brought a new level of clarity to programming asynchrony in a main-
stream language with a feature usually referred to as async/await. The feature consists
of two complementary parts around async methods:

 Async methods produce a result representing an asynchronous operation with no
effort on the part of the developer. This result type is usually Task or Task<T>.

 Async methods use await expressions to consume asynchronous operations. If
the method tries to await an operation that hasn’t completed yet, the method
pauses asynchronously until the operation completes and then continues.

NOTE More properly, I could call these asynchronous functions, because
anonymous methods and lambda expressions can be asynchronous, too.

Exactly what’s meant by asynchronous operation and pausing asynchronously is where
things become tricky, and I won’t attempt to explain this now. But the upshot is that
you can write code that’s asynchronous but looks mostly like the synchronous code
you’re more familiar with. It even allows for concurrency in a natural way. As an exam-
ple, consider this asynchronous method that might be called from a Windows Forms
event handler:

private async Task UpdateStatus()
{
 Task<Weather> weatherTask = GetWeatherAsync();
 Task<EmailStatus> emailTask = GetEmailStatusAsync();

Starts two operations
concurrently

https://nodatime.org
https://github.com/nodatime/nodatime

11An evolving language

 Weather weather = await weatherTask;
 EmailStatus email = await emailTask;

 weatherLabel.Text = weather.Description;
 inboxLabel.Text = email.InboxCount.ToString();
}

In addition to starting two operations concurrently and then awaiting their results,
this demonstrates how async/await is aware of synchronization contexts. You’re updat-
ing the user interface, which can be done only in a UI thread, despite also starting
and waiting for long-running operations. Before async/await, this would’ve been com-
plex and error prone.

 I don’t claim that async/await is a silver bullet for asynchrony. It doesn’t magically
remove all the complexity that naturally comes with the territory. Instead, it lets you
focus on the inherently difficult aspects of asynchrony by taking away a lot of the boil-
erplate code that was previously required.

 All of the features you’ve seen so far aim to make code simpler. The final aspect I
want to mention is slightly different.

1.1.5 Balancing efficiency and complexity

I remember my first experiences with Java; it was entirely interpreted and painfully slow.
After a while, optional just-in-time (JIT) compilers became available, and eventually it
was taken almost for granted that any Java implementation would be JIT-compiled.

 Making Java perform well took a lot of effort. This effort wouldn’t have happened
if the language had been a flop. But developers saw the potential and already felt
more productive than they had before. Speed of development and delivery can often
be more important than application speed.

 C# was in a slightly different situation. The Common Language Runtime (CLR)
was pretty efficient right from the start. The language support for easy interop with
native code and for performance-sensitive unsafe code with pointers helps, too. C#
performance continues to improve over time. (I note with a wry smile that Microsoft is
now introducing tiered JIT compilation broadly like the Java HotSpot JIT compiler.)

 But different workloads have different performance demands. As you’ll see in sec-
tion 1.2, C# is now in use across a surprising variety of platforms, including gaming
and microservices, both of which can have difficult performance requirements.

 Asynchrony helps address performance in some situations, but C# 7 is the most
overtly performance-sensitive release. Read-only structs and a much larger surface
area for ref features help to avoid redundant copying. The Span<T> feature present
in modern frameworks and supported by ref-like struct types reduces unnecessary
allocation and garbage collection. The hope is clearly that when used carefully, these
techniques will cater to the requirements of specific developers.

 I have a slight sense of unease around these features, as they still feel complex to
me. I can’t reason about a method using an in parameter as clearly as I can about

Asynchronously waits
for them to complete

Updates the
userinterface

12 CHAPTER 1 Survival of the sharpest

regular value parameters, and I’m sure it will take a while before I’m comfortable with
what I can and can’t do with ref locals and ref returns.

 My hope is that these features will be used in moderation. They’ll simplify code in
situations that benefit from them, and they will no doubt be welcomed by the develop-
ers who maintain that code. I look forward to experimenting with these features in
personal projects and becoming more comfortable with the balance between
improved performance and increased code complexity.

 I don’t want to sound this note of caution too loudly. I suspect the C# team made
the right choice to include the new features regardless of how much or little I’ll use
them in my work. I just want to point out that you don’t have to use a feature just
because it’s there. Make your decision to opt into complexity a conscious one. Speak-
ing of opting in, C# 7 brought a new meta-feature to the table: the use of minor ver-
sion numbers for the first time since C# 1.

1.1.6 Evolution at speed: Using minor versions

The set of version numbers for C# is an odd one, and it is complicated by the fact that
many developers get understandably confused between the framework and the lan-
guage. (There’s no C# 3.5, for example. The .NET Framework version 3.0 shipped
with C# 2, and .NET 3.5 shipped with C# 3.) C# 1 had two releases: C# 1.0 and C# 1.2.
Between C# 2 and C# 6 inclusive, there were only major versions that were usually
backed by a new version of Visual Studio.

 C# 7 bucked that trend: there were releases of C# 7.0, C# 7.1, C# 7.2, and C# 7.3,
which were all available in Visual Studio 2017. I consider it highly likely that this pat-
tern will continue in C# 8. The aim is to allow new features to evolve quickly with user
feedback. The majority of C# 7.1–7.3 features have been tweaks or extensions to the
features introduced in C# 7.0.

 Volatility in language features can be disconcerting, particularly in large organiza-
tions. A lot of infrastructure may need to be changed or upgraded to make sure the
new language version is fully supported. A lot of developers may learn and adopt new
features at different paces. If nothing else, it can be a little uncomfortable for the lan-
guage to change more often than you’re used to.

 For this reason, the C# compiler defaults to using the earliest minor version of the
latest major version it supports. If you use a C# 7 compiler and don’t specify any lan-
guage version, it will restrict you to C# 7.0 by default. If you want to use a later minor
version, you need to specify that in your project file and opt into the new features. You
can do this in two ways, although they have the same effect. You can edit your project
file directly to add a <LangVersion> element in a <PropertyGroup>, like this:

<PropertyGroup>
 ...
 <LangVersion>latest</LangVersion>
</PropertyGroup>

Other properties

Specifies the language
version of the project

13An evolving platform

Figure 1.1 Language version settings in Visual Studio

If you don’t like editing project files directly, you can go to the project properties in
Visual Studio, select the Build tab, and then click the Advanced button at the bottom
right. The Advanced Build Settings dialog box, shown in figure 1.1, will open to allow
you to select the language version you wish to use and other options.

 This option in the dialog box isn’t new, but you’re more likely to want to use it now
than in previous versions. The values you can select are as follows:

 default—The first release of the latest major version
 latest—The latest version
 A specific version number—For example, 7.0 or 7.3

This doesn’t change the version of the compiler you run; it changes the set of lan-
guage features available to you. If you try to use something that isn’t available in the
version you’re targeting, the compiler error message will usually explain which ver-
sion is required for that feature. If you try to use a language feature that’s entirely
unknown to the compiler (using C# 7 features with a C# 6 compiler, for example), the
error message is usually less clear.

 C# as a language has come a long way since its first release. What about the plat-
form it runs on?

1.2 An evolving platform
The last few years have been exhilarating for .NET developers. A certain amount of
frustration exists as well, as both Microsoft and the .NET community come to terms
with the implications of a more open development model. But the overall result of the
hard work by so many people is remarkable.

 For many years, running C# code would almost always mean running on Windows.
It would usually mean either a client-side app written in Windows Forms or Windows
Presentation Foundation (WPF) or a server-side app written with ASP.NET and proba-
bly running behind Internet Information Server (IIS). Other options have been

14 CHAPTER 1 Survival of the sharpest

available for a long time, and the Mono project in particular has a rich history, but the
mainstream of .NET development was still on Windows.

 As I write this in June 2018, the .NET world is very different. The most prominent
development is .NET Core, a runtime and framework that is portable and open
source, is fully supported by Microsoft on multiple operating systems, and has stream-
lined development tooling. Only a few years ago, that would’ve been unthinkable.
Add to that a portable and open source IDE in the form of Visual Studio Code, and
you get a flourishing .NET ecosystem with developers working on all kinds of local
platforms and then deploying to all kinds of server platforms.

 It would be a mistake to focus too heavily on .NET Core and ignore the many other
ways C# runs these days. Xamarin provides a rich multiplatform mobile experience.
Its GUI framework (Xamarin Forms) allows developers to create user interfaces that
are fairly uniform across different devices where that’s appropriate but that can take
advantage of the underlying platform, too.

 Unity is one of the most popular game-development platforms in the world. With a
customized Mono runtime and ahead-of-time compilation, it can provide challenges
to C# developers who are used to more-traditional runtime environments. But for
many developers, this is their first or perhaps their only experience with the language.

 These widely adopted platforms are far from the only ones making C#. I’ve
recently been working with Try .NET and Blazor for very different forms of browser/
C# interaction.

 Try .NET allows users to write code in a browser, with autocompletion, and then
build and run that code. It’s great for experimenting with C# with a barrier to entry
that’s about as low as it can be.

 Blazor is a platform for running Razor pages directly in a browser. These aren’t
pages rendered by a server and then displayed in the browser; the user-interface code
runs within the browser using a version of the Mono runtime converted into Web-
Assembly. The idea of a whole runtime executing Intermediate Language (IL) via the
JavaScript engine in a browser, not only on full computers but also on mobile phones,
would’ve struck me as absurd just a few years ago. I’m glad other developers have
more imagination. A lot of the innovation in this space has been made possible only
by a more collaborative and open community than ever before.

1.3 An evolving community
I’ve been involved in the C# community since the C# 1.0 days, and I’ve never seen it as
vibrant as it is today. When I started using C#, it was very much seen as an “enterprise”
programming language, and there was relatively little sense of fun and exploration.1

With that background, the open source C# ecosystem grew fairly slowly compared
with other languages, including Java, which was also considered an enterprise

1 Don’t get me wrong; it was a pleasant community to be part of, and there have always been people experi-
menting with C# for fun.

15An evolving book

language. Around the time of C# 3, the alt.NET community was looking beyond the
mainstream of .NET development, and this was seen as being against Microsoft in
some senses.

 In 2010, the NuGet (initially NuPack) package manager was launched, which
made it much easier to produce and consume class libraries, whether commercial or
open source. Even though the barrier of downloading a zip file, copying a DLL into
somewhere appropriate, and then adding a reference to it doesn’t sound hugely sig-
nificant, every point of friction can put developers off.

NOTE Package managers other than NuGet were developed even earlier,
and the OpenWrap project developed by Sebastien Lambla was particularly
influential.

Fast-forward to 2014, and Microsoft announced that its Roslyn compiler platform was
going to become open source under the umbrella of the new .NET Foundation. Then
.NET Core was announced under the initial codename Project K; DNX came later, fol-
lowed by the .NET Core tooling that’s now released and stable. Then came ASP.NET
Core. And Entity Framework Core. And Visual Studio Code. The list of products that
truly live and breathe on GitHub goes on.

 The technology has been important, but the new embrace of open source by
Microsoft has been equally vital for a healthy community. Third-party open source
packages have blossomed, including innovative uses for Roslyn and integrations
within .NET Core tooling that just feel right.

 None of this has happened in a vacuum. The rise of cloud computing makes .NET
Core even more important to the .NET ecosystem than it would’ve been otherwise;
support for Linux isn’t optional. But because .NET Core is available, there’s now noth-
ing special about packaging up an ASP.NET Core service in a Docker image, deploy-
ing it with Kubernetes, and using it as just one part of a larger application that could
involve many languages. The cross-pollination of good ideas between many communi-
ties has always been present, but it is stronger than ever right now.

 You can learn C# in a browser. You can run C# anywhere. You can ask questions
about C# on Stack Overflow and myriad other sites. You can join in the discussion
about the future of the language on the C# team’s GitHub repository. It’s not perfect;
we still have collective work to do in order to make the C# community as welcoming as
it possibly can be for everyone, but we’re in a great place already.

 I’d like to think that C# in Depth has its own small place in the C# community, too.
How has this book evolved?

1.4 An evolving book
You’re reading the fourth edition of C# in Depth. Although the book hasn’t evolved at
the same pace as the language, platform, or community, it also has changed. This sec-
tion will help you understand what is covered in this book.

16 CHAPTER 1 Survival of the sharpest

1.4.1 Mixed-level coverage

The first edition of C# in Depth came out in April 2008, which was coincidentally the
same time that I joined Google. Back then, I was aware that a lot of developers knew
C# 1 fairly well, but they were picking up C# 2 and C# 3 as they went along without a
firm grasp of how all the pieces fit together. I aimed to address that gap by diving into
the language at a depth that would help readers understand not only what each fea-
ture did but why it was designed that way.

 Over time, the needs of developers change. It seems to me that the community has
absorbed a deeper understanding of the language almost by osmosis, at least for ear-
lier versions. Attaining deeper understanding of the language won’t be a universal
experience, but for the fourth edition, I wanted the emphasis to be on the newer ver-
sions. I still think it’s useful to understand the evolution of the language version by
version, but there’s less need to look at every detail of the features in C# 2–4.

NOTE Looking at the language one version at a time isn’t the best way to
learn the language from scratch, but it’s useful if you want to understand it
deeply. I wouldn’t use the same structure to write a book for C# beginners.

I’m also not keen on thick books. I don’t want C# in Depth to be intimidating, hard to
hold, or hard to write in. Keeping 400 pages of coverage for C# 2–4 just didn’t feel
right. For that reason, I’ve compressed my coverage of those versions. Every feature is
mentioned, and I go into detail where I feel it’s appropriate, but there’s less depth
than in the third edition. Use the coverage in the fourth edition as a review of topics
you already know and to help you determine topics you want to read more about in
the third edition. You can find a link to access an electronic copy of the third edition
at www.manning.com/books/c-sharp-in-depth-fourth-edition. Versions 5–7 of the lan-
guage are covered in more detail in this edition. Asynchrony is still a tough topic to
understand, and the third edition obviously doesn’t cover C# 6 or 7 at all.

 Writing, like software engineering, is often a balancing act. I hope the balance I’ve
struck between detail and brevity works for you.

TIP If you have a physical copy of this book, I strongly encourage you to write
in it. Make note of places where you disagree or parts that are particularly use-
ful. The act of doing this will reinforce the content in your memory, and the
notes will serve as reminders later.

1.4.2 Examples using Noda Time

Most of the examples I provide in the book are standalone. But to make a more com-
pelling case for some features, it’s useful to be able to point to where I use them in
production code. Most of the time, I use Noda Time for this.

 Noda Time is an open source project I started in 2009 to provide a better date and
time library for .NET. It serves a secondary purpose, though: it’s a great sandbox

www.manning.com/books/c-sharp-in-depth-fourth-edition

17An evolving book

project for me. It helps me hone my API design skills, learn more about performance
and benchmarking, and test new C# features. All of this without breaking users, of
course.

 Every new version of C# has introduced features that I’ve been able to use in Noda
Time, so I think it makes sense to use those as concrete examples in this book. All of
the code is available on GitHub, which means you can clone it and experiment for
yourself. The purpose of using Noda Time in examples isn’t to persuade you to use
the library, but I’m not going to complain if that happens to be a side effect.

 In the rest of the book, I’ll assume that you know what I’m talking about when I
refer to Noda Time. In terms of making it suitable for examples, the important aspects
of it are as follows:

 The code needs to be as readable as possible. If a language feature lets me
refactor for readability, I’ll jump at the chance.

 Noda Time follows semantic versioning, and new major versions are rare. I pay
attention to the backward-compatibility aspects of applying new language fea-
tures.

 I don’t have concrete performance goals, because Noda Time can be used in
many contexts with different requirements. I do pay attention to performance
and will embrace features that improve efficiency, so long as they don’t make
the code much more complex.

To find out more about the project and check out its source code, visit https://
nodatime.org or https://github.com/nodatime/nodatime.

1.4.3 Terminology choices

I’ve tried to follow the official C# terminology as closely as I can within the book, but
occasionally I’ve allowed clarity to take precedence over precision. For example, when
writing about asynchrony, I often refer to async methods when the same information
also applies to asynchronous anonymous functions. Likewise, object initializers apply
to accessible fields as well as properties, but it’s simpler to mention that once and then
refer only to properties within the rest of the explanation.

 Sometimes the terms within the specification are rarely used in the wider commu-
nity. For example, the specification has the notion of a function member. That’s a
method, property, event, indexer, user-defined operator, instance constructor, static
constructor, or finalizer. It’s a term for any type member that can contain executable
code, and it’s useful when describing language features. It’s not nearly as useful when
you’re looking at your own code, which is why you may never have heard of it before.
I’ve tried to use terms like this sparingly, but my view is that it’s worth becoming some-
what familiar with them in the spirit of getting closer to the language.

 Finally, some concepts don’t have any official terminology but are still useful to
refer to in a shorthand form. The one I’ll use most often is probably unspeakable names.

https://nodatime.org
https://nodatime.org
https://github.com/nodatime/nodatime

18 CHAPTER 1 Survival of the sharpest

This term, coined by Eric Lippert, refers to an identifier generated by the compiler to
implement features such as iterator blocks or lambda expressions.2 The identifier is
valid for the CLR but not valid in C#; it’s a name that can’t be “spoken” within the lan-
guage, so it’s guaranteed not to clash with your code.

Summary
I love C#. It’s both comfortable and exciting, and I love seeing where it’s going next. I
hope this chapter has passed on some of that excitement to you. But this has been
only a taste. Let’s get onto the real business of the book without further delay.

2 We think it was Eric, anyway. Eric can’t remember for sure and thinks Anders Hejlsberg may have come up
with the term first. I’ll always associate it with Eric, though, along with his classification for exceptions: fatal,
boneheaded, vexing, or exogenous.

Part 2

C# 2–5

This part of the book covers all the features introduced between C# 2
(shipped with Visual Studio 2005) and C# 5 (shipped with Visual Studio 2012).
This is the same set of features that took up the entire third edition of this book.
Much of it feels like ancient history now; for example, we simply take it for
granted that C# includes generics.

 This was a tremendously productive period for C#. Some of the features I’ll
cover in this part are generics, nullable value types, anonymous methods, method
group conversions, iterators, partial types, static classes, automatically imple-
mented properties, implicitly typed local variables, implicitly typed arrays, object
initializers, collection initializers, anonymous types, lambda expressions, exten-
sion methods, query expressions, dynamic typing, optional parameters, named
arguments, COM improvements, generic covariance and contravariance, async/
await, and caller information attributes. Phew!

 I expect most of you to be at least somewhat familiar with most of the fea-
tures, so I ramp up pretty fast in this part. Likewise, for the sake of reasonable
brevity, I haven’t gone into as much detail as I did in the third edition. The
intention is to cover a variety of reader needs:

 An introduction to features you may have missed along the way
 A reminder of the features you once knew about but have forgotten
 An explanation of the reasons behind the features: why they were intro-

duced and why they were designed in the way they were
 A quick reference in case you know what you want to do but have forgot-

ten some syntax

20 CHAPTER

If you want more detail, please refer to the third edition. As a reminder, purchase of
the fourth edition entitles you to an e-book copy of the third edition.

 There’s one exception to this brief coverage rule: I’ve completely rewritten the
coverage of async/await, which is the largest feature in C# 5. Chapter 5 covers what
you need to know to use async/await, and chapter 6 addresses how it’s implemented
behind the scenes. If you’re new to async/await, you’ll almost certainly want to wait
until you’ve used it a bit before you read chapter 6, and even then, you shouldn’t
expect it to be a simple read. I’ve tried to explain things as accessibly as I can, but the
topic is fundamentally complex. I do encourage you to try, though; understanding
async/await at a deep level can help boost your confidence when using the feature,
even if you never need to dive into the IL the compiler generates for your own code.
The good news is that after chapter 6, you’ll find a little relief in the form of chapter 7.
It’s the shortest chapter in the book and a chance to recover before exploring C# 6.

 With all introductions out of the way, brace yourself for an onslaught of features.

C# 2–5

21

C# 2

If your experience with C# goes far enough back, this chapter will be a reminder of
just how far we’ve come and a prompt to be grateful for a dedicated and smart lan-
guage design team. If you’ve never programmed C# without generics, you may end
up wondering how C# ever took off without these features.1 Either way, you may still
find features you weren’t aware of or details you’ve never considered listed here.

 It’s been more than 10 years since C# 2 was released (with Visual Studio 2005), so
it can be hard to get excited about features in the rearview mirror. You shouldn’t

This chapter covers
 Using generic types and methods for flexible, safe

code

 Expressing the absence of information with nullable
value types

 Constructing delegates relatively easily

 Implementing iterators without writing boilerplate code

1 For me, the answer to this one is simple: C# 1 was a more productive language for many developers than
Java was at the time.

	C# in Depth
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	Book forum
	Other online resources

	about the author
	about the cover illustration
	Part 1 C# in context
	1 Survival of the sharpest
	1.1 An evolving language
	1.1.1 A helpful type system at large and small scales
	1.1.2 Ever more concise code
	1.1.3 Simple data access with LINQ
	1.1.4 Asynchrony
	1.1.5 Balancing efficiency and complexity
	1.1.6 Evolution at speed: Using minor versions

	1.2 An evolving platform
	1.3 An evolving community
	1.4 An evolving book
	1.4.1 Mixed-level coverage
	1.4.2 Examples using Noda Time
	1.4.3 Terminology choices

	Summary

	Part 2 C# 2?5
	2 C# 2

