
M A N N I N G

Dane Hillard

Practices of the Python Pro

Practices of the Python Pro

DANE HILLARD

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development editor: Toni ArritolaManning Publications Co.
20 Baldwin Road Technical development editor: Nick Watts

Review editor: Aleks DragosavljePO Box 761 vić
Production editor: Lori WeidertShelter Island, NY 11964

Copy editor: Andy Carroll
Proofreader: Carl Quesnel

Technical proofreader: Jens Christian Bredahl Madson
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617296086
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

http://www.manning.com

brief contents

PART 1 WHY IT ALL MATTERS ..1

1 ■ The bigger picture 3

PART 2 FOUNDATIONS OF DESIGN...17

2 ■ Separation of concerns 19

3 ■ Abstraction and encapsulation 41

4 ■ Designing for high performance 58

5 ■ Testing your software 77

PART 3 NAILING DOWN LARGE SYSTEMS 101

6 ■ Separation of concerns in practice 103

7 ■ Extensibility and flexibility 127

8 ■ The rules (and exceptions) of inheritance 143

9 ■ Keeping things lightweight 160

10 ■ Achieving loose coupling 177

PART 4 WHAT’S NEXT? ... 197

11 ■ Onward and upward 199

v

contents
preface xiii
acknowledgments xv
about this book xvii
about the author xxi
about the cover illustration xxii

PART 1 WHY IT ALL MATTERS...1

1 The bigger picture 3
1.1 Python is an enterprise language 4

The times they are a-changin’ 5 ■ What I like about Python 5

1.2 Python is a teaching language 5

1.3 Design is a process 6
The user experience 7 ■ You’ve been here before 8

1.4 Design enables better software 8
Considerations in software design 9 ■ Organically grown
software 10

1.5 When to invest in design 11

1.6 New beginnings 12

vii

CONTENTSviii

1.7 Design is democratic 12
Presence of mind 13

1.8 How to use this book 15

PART 2 FOUNDATIONS OF DESIGN17

2 Separation of concerns 19
2.1 Namespacing 20

Namespaces and the import statement 20 ■ The many masks of
importing 23 ■ Namespaces prevent collisions 24

2.2 The hierarchy of separation in Python 25
Functions 26 ■ Classes 32 ■ Modules 37 ■ Packages 37

3 Abstraction and encapsulation 41
3.1 What is abstraction? 42

The “black box” 42 ■ Abstraction is like an onion 43
Abstraction is a simplifier 45 ■ Decomposition enables
abstraction 46

3.2 Encapsulation 47
Encapsulation constructs in Python 47 ■ Expectations of privacy
in Python 48

3.3 Try it out 48
Refactoring 50

3.4 Programming styles are an abstraction too 51
Procedural programming 51 ■ Functional programming 51
Declarative programming 53

3.5 Typing, inheritance, and polymorphism 54

3.6 Recognizing the wrong abstraction 56
Square pegs in round holes 56 ■ Clever gets the cleaver 57

4 Designing for high performance 58
4.1 Hurtling through time and space 59

Complexity is a little . . . complex 59 ■ Time complexity 60
Space complexity 63

4.2 Performance and data types 64
Data types for constant time 64 ■ Data types for linear time 65
Space complexity of operations on data types 65

CONTENTS ix

4.3 Make it work, make it right, make it fast 68
Making it work 68 ■ Making it right 68 ■ Making it fast 71

4.4 Tools 72
timeit 72 ■ CPU profiling 73

4.5 Try it out 75

5 Testing your software 77
5.1 What is software testing? 78

Does it do what it says on the tin? 78 ■ The anatomy of a
functional test 78

5.2 Functional testing approaches 79
Manual testing 80 ■ Automated testing 80 ■ Acceptance
testing 80 ■ Unit testing 82 ■ Integration testing 83
The testing pyramid 84 ■ Regression testing 85

5.3 Statements of fact 86

5.4 Unit testing with unittest 86
Test organization with unittest 86 ■ Running tests with
unittest 87 ■ Writing your first test with unittest 87
Writing your first integration test with unittest 90 ■ Test
doubles 92 ■ Try it out 93 ■ Writing interesting tests 96

5.5 Testing with pytest 96
Test organization with pytest 97 ■ Converting unittest tests to
pytest 97

5.6 Beyond functional testing 98
Performance testing 98 ■ Load testing 99

5.7 Test-driven development: A primer 99
It’s a mindset 100 ■ It’s a philosophy 100

PART 3 NAILING DOWN LARGE SYSTEMS101

6 Separation of concerns in practice 103
6.1 A command-line bookmarking application 104

6.2 A tour of Bark 105
The benefits of separation: Reprise 105

6.3 An initial code structure, by concern 106
The persistence layer 107 ■ The business logic layer 115
The presentation layer 119

CONTENTSx

7 Extensibility and flexibility 127
7.1 What is extensible code? 127

Adding new behaviors 128 ■ Modifying existing behaviors 130
Loose coupling 131

7.2 Solutions for rigidity 133
Letting go: Inversion of control 133 ■ The devil’s in the details:
Relying on interfaces 136 ■ Fighting entropy: The robustness
principle 137

7.3 An exercise in extension 138

8 The rules (and exceptions) of inheritance 143
8.1 The inheritance of programming past 143

The silver bullet 144 ■ The challenges of hierarchies 144

8.2 The inheritance of programming present 146
What is inheritance for, really? 146 ■ Substitutability 147
The ideal use case for inheritance 148

8.3 Inheritance in Python 150
Type inspection 150 ■ Superclass access 151 ■ Multiple
inheritance and method resolution order 152 ■ Abstract base
classes 155

8.4 Inheritance and composition in Bark 157
Refactoring to use an abstract base class 157 ■ A final check on
your inheritance work 159

9 Keeping things lightweight 160
9.1 How big should my class/function/module be? 161

Physical size 161 ■ Single responsibility 161 ■ Code
complexity 162

9.2 Breaking down complexity 166
Extracting configuration 166 ■ Extracting functions 168

9.3 Decomposing classes 170
Initialization complexity 171 ■ Extracting classes and forwarding
calls 173

10 Achieving loose coupling 177
10.1 Defining coupling 177

The connective tissue 178 ■ Tight coupling 178 ■ Loose
coupling 181

CONTENTS xi

10.2 Recognizing coupling 184
Feature envy 184 ■ Shotgun surgery 184 ■ Leaky
abstractions 185

10.3 Coupling in Bark 186

10.4 Addressing coupling 188
User messaging 189 ■ Bookmark persistence 191 ■ Try it
out 192

PART 4 WHAT’S NEXT? ...197

11 Onward and upward 199
11.1 What now? 199

Develop a plan 200 ■ Execute the plan 201 ■ Track your
progress 203

11.2 Design patterns 204
Ups and downs of design patterns in Python 206 ■ Terms to start
with 206

11.3 Distributed systems 206
Modes of failure in distributed systems 207 ■ Addressing
application state 208 ■ Terms to start with 208

11.4 Take a Python deep dive 208
Python code style 208 ■ Language features are patterns 209
Terms to start with 210

11.5 Where you’ve been 210
There and back again: A developer’s tale 210 ■ Signing off 212

appendix Installing Python 213

index 217

preface
Python, like me, was born in December of 1989. Although I’ve accomplished a great
deal in the subsequent three decades, Python’s success is prolific. More people than
ever before are picking it up to accomplish fascinating things in data science, machine
learning, and more. Since I learned Python, this “second-best language for every-
thing” has in reality been my first choice for many endeavors.

 I had a rather traditional path into programming through the Electrical Engineer-
ing and Computer Science Department at the University of Michigan. At that time,
the coursework focused mainly on C++ and MATLAB—languages I continued to use
in my first job out of school. I developed some shell scripting and SQL chops in my
next position, processing big data for bioinformatics. I also started using PHP to work
on a personal WordPress site from scratch.

 Although I was getting results (and cool ones, in some cases), none of the lan-
guages I was using resonated with me. But I was oblivious. I assumed that programming
languages were purely means to an end, and they had little chance of being fun to
work with. Around this time, a friend invited me to join him in a hackathon project to
build a Ruby library.

 The world exploded with color, fruits tasted sweeter, and all that. The ease of using
an interpreted language and the human-friendly syntax of Ruby really made me think
about the tools I’d been using. Although I didn’t stick with Ruby for too long, I
decided to give Python and the Django web framework a try for the next iteration of
my personal site. It gave me the same joy and shallow learning curve I’d seen with
Ruby, and I haven’t looked back since!

xiii

PREFACExiv

 Now that Python is recognized widely as a language of choice for many tasks, folks
coming into software development don’t need to go through the trial and error pro-
cess I did. New and interesting pathways into a career in software are opening up all
around too. Despite these differences, I hope we can all share in the common experi-
ence of finding joy in programming with Python. I also hope this book can contribute
to that joy.

 Come along on the wonderful Python journey I fell into somewhat haphazardly. I
want to see you build a website, a data pipeline, or an automated plant-watering sys-
tem. Whatever you fancy. Python’s got your back. Send photos and code samples of
your projects to python-pro-projects@danehillard.com.

mailto:python-pro-projects@danehillard.com

acknowledgments
I didn’t write this book alone. My appreciation runs deep for everyone who helped me
along the way, at every stage and in every capacity. You are loved.

 Most anyone who’s been involved in the production of a book can tell you that it’s
always more work than you think. I heard this many times throughout the process,
and it certainly was a lot of work. What’s not always clear is that the real struggle is bal-
ancing all that extra work with your existing life.

 To my partner, Stefanie: your support, encouragement, and tolerance of my rant-
ing and raving were paramount in making this book a reality. Thank you for judging
my neglect lightly and extricating me from this project during the roughest times. I
could not have done this without you.

 Thank you to my parents, Kim and Donna, for always funneling my energy toward
curiosity, creativity, and compassion.

 Thanks to my dear friend Vincent Zhang for spending countless nights at the cof-
fee shop coding by my side. You were there when the concept for this book was born,
and your validation helped spur me to take on this endeavor.

 Thank you to James Nguyen for persevering as you changed paths to become a
developer. You embody the audience for this book, and your input has been invalu-
able. I’m proud of your accomplishments.

 My gratitude goes to all my colleagues at ITHAKA and beyond for your input and
support. I thank you for enduring what has undoubtedly been a flighty period for me.

xv

ACKNOWLEDGMENTSxvi

 To Toni Arritola, my editor: thank you for your determination in pushing me ever
toward higher-quality teaching. The writing process is fraught with many unexpected
snags, but you provided me consistency and stability. Thank you.

 To Nick Watts, my technical editor: your feedback has pushed the content of this
book from frantic ramblings to plausible software teachings. Your candor and insight
are much appreciated.

 Thank you to Mike Stephens and Marjan Bace at Manning for believing in this
idea and trusting me as its shepherd. Thank you to everyone at Manning for working
tirelessly to bring authors’ ideas to life.

 To all the reviewers—Al Krinker, Bonnie Bailey, Burkhard Nestmann, Chris Way-
man, David Kerns, Davide Cadamuro, Eriks Zelenka, Graham Wheeler, Gregory
Matuszek, Jean-François Morin, Jens Christian Bredahl Madsen, Joseph Perenia, Mark
Thomas, Markus Maucher, Mike Stevens, Patrick Regan, Phil Sorensen, Rafael Cas-
semiro Freire, Richard Fieldsend, Robert Walsh, Steven Parr, Sven Stumpf, and Willis
Hampton—your suggestions helped make this a better book.

 A final thank you to anyone and everyone else who has had a positive influence—
directly, intentionally, or otherwise—on my journey in programming and this book. I
cannot hope to produce an exhaustive list; names not appearing here are due
expressly to the limitations of my own mind. Thank you to Mark Brehob, Dr. Andrew
DeOrio, Jesse Sielaff, Trek Glowacki, everyone at SAIC (in our little Ann Arbor office),
everyone at Compendia Bioscience (and friends), Brandon Rhodes, Kenneth Love,
Trey Hunner, Jeff Triplett, Mariatta Wijaya, Ali Spittel, Chris Coyier, Sarah Drasner,
David Beazley, Dror Ayalon, Tim Allen, Sandi Metz, and Martin Fowler.

about this book
Practices of the Python Pro introduces several concepts that software developers in almost
any language can use to improve their work. This would be a great book to read after
learning the fundamentals of the Python language.

Who should read this book
Practices of the Python Pro is for anyone in the early stages of their programming jour-
ney. In fact, people outside the software industry altogether who use software to sup-
plement their work can find value in this book. The concepts contained in these pages
will help readers build software that’s more maintainable, which in turn makes their
software easier to collaborate on.

 In the sciences, reproducibility and provenance are important aspects of the
research process. As more research comes to rely on software, code that people can
understand, update, and improve is a major consideration. But college curricula are
still catching up to this intersection of software with other disciplines. For those with
limited experience in formal software development, this book provides a set of princi-
ples for producing shareable, reusable software.

 If you’re seasoned in object-oriented programming and domain-driven design, you
may find this book too introductory for your benefit. On the other hand, if you’re rel-
atively new to Python, software, or software design, give this book a try. There’s some-
thing in here for you.

xvii

ABOUT THIS BOOKxviii

How this book is organized: A roadmap
Practices of the Python Pro consists of 11 chapters in 4 parts. Parts 1 and 2 provide discus-
sion along with short examples and an occasional exercise. Part 3 builds on what
you’ve learned in earlier chapters and contains a variety of exercises. Part 4 provides
strategies for learning more, along with recommendations about what to try after
reading this book.

 Part 1, “Why it all matters,” sets the stage for Python’s rise to fame and why software
design is valuable.

■ Chapter 1 covers some recent history of Python and why I enjoy developing
Python programs. It goes on to explain software design, why it’s important, and
how it manifests in your day-to-day work.

Part 2, “Foundations of design,” covers the high-level concepts that underpin software
design and development.

■ Chapter 2 covers separation of concerns, a fundamental activity that provides a
basis for several others in the book.

■ Chapter 3 explains abstraction and encapsulation, showing you how hiding
information and providing simpler interfaces to more complex logic helps you
keep a handle on your code.

■ Chapter 4 prompts you to think about performance, covering different data
structures, approaches, and tools to help you build speedy programs.

■ Chapter 5 teaches you about testing your software, using a variety of approaches,
from unit testing to end-to-end testing.

Part 3, “Nailing down large systems,” walks you through building a real application
using the principles you’ve learned.

■ Chapter 6 introduces the application you’ll build in the book and provides
exercises for creating a program’s foundation.

■ Chapter 7 covers the concepts of extensibility and flexibility and includes exer-
cises that add extensibility to the application.

■ Chapter 8 helps you understand class inheritance, providing recommendations
about where and when it should be used. It continues on with exercises that
examine inheritance in the application you’re building.

■ Chapter 9 steps back a bit, introducing tools and an approach for keeping code
from growing too large as you go along.

■ Chapter 10 explains loose coupling, providing some final exercises to reduce
the coupling in the application you’re building.

Part 4, “What’s next?” gives you some recommendations for how and what to learn next.

■ Chapter 11 shows you how I map out new learning material and gives you a few
areas of study to try if you’re interested in going deeper into software
development.

	Practices of the Python Pro
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap

