
M A N N I N G

Riccardo Terrell

Modern patterns of concurrent and
 parallel programming

Chapter dependency graph

Chapter 1
• Why concurrency and definitions?
• Pitfalls of concurrent programming

Chapter 2
• Solving problems by composing simple solutions
• Simplifying programming with closures

Chapter 3
• Immutable data structures
• Lock-free concurrent code

Chapter 6
• Functional reactive programming
• Querying real-time event streams

Chapter 4
• Big data parallelism
• The Fork/Join pattern

Chapter 7
• Composing parallel operations
• Querying real-time event streams

Chapter 5
• Isolating and controlling side effects

Chapter 8
• Parallel asynchronous computations
• Composing asynchronous executions

Chapter 11
• Agent (message-passing) model

Chapter 10
• Task combinators
• Async combinators and conditional operators

Chapter 13
• Reducing memory consumption
• Parallelizing dependent tasks

Chapter 12
• Composing asynchronous TPL Dataflow blocks
• Concurrent Producer/Consumer pattern

Chapter 14
• Scalable applications using CQRS pattern

Chapter 9
• Cooperating asynchronous computations
• Extending asynchronous F# computational expressions

Concurrency in .NET

Concurrency in .NET
Modern patterns of concurrent and parallel programming

RICCARDO TERRELL

MANN I NG
Shelter ISland

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Marina Michaels
 Technical development editor: Michael Lund
 Technical proofreader: Viorel Moisei
 Review editor: Aleksandar Dragosavljević
 Project manager: Tiffany Taylor
 Copy editor: Katie Petito
 Proofreader: Elizabeth Martin
 Typesetter: Happenstance Type-O-Rama
 Cover designer: Marija Tudor

ISBN 9781617292996
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

v

I dedicate this book to my wonderful and supportive wife, Bryony. Your support, love,
care, and continued encouragement throughout my writing process are what allowed
me to turn this project into a reality. I love you and admire you for your many efforts

and patience while I was busy writing. Thank you for always believing in me.

I also dedicate this book to my loyal pugs, Bugghina and Stellina, who were always
unconditionally and enthusiastically beside me while writing this book. You’re

man’s best friends and this author’s furriest fans.

vii

brief contents

Part 1 Benefits of functional programming applicable to
concurrent programs .. 1
1 ■	 Functional concurrency foundations 3
2 ■	 Functional programming techniques for concurrency 30
3 ■	 Functional data structures and immutability 59

Part 2 How to approach the different parts of a
concurrent program ..95
4 ■	 The basics of processing big data: data parallelism, part 1 97
5 ■	 PLINQ and MapReduce: data parallelism, part 2 118
6 ■	 Real-time event streams: functional reactive programming 148
7 ■	 Task-based functional parallelism 182
8 ■	 Task asynchronicity for the win 213
9 ■	 Asynchronous functional programming in F# 247

10 ■	 	Functional combinators for fluent concurrent
programming 275

11 ■	 Applying reactive programming everywhere with agents 328
12 ■	 	Parallel workflow and agent programming with TPL

Dataflow 365

viiiviii brief contents

Part 3 Modern patterns of concurrent
programming applied ...395
13 ■	 	Recipes and design patterns for successful

concurrent programming 397
14 ■	 	Building a scalable mobile app with concurrent

functional programming 449

ix

contents
preface xix
acknowledgments xxiii
about this book xxv
about the author xxix
about the cover illustrator xxxi

Part 1 Benefits of functional programming
applicable to concurrent programs 1

 1 Functional concurrency foundations 3
 1.1 What you’ll learn from this book 5

 1.2 Let’s start with terminology 6
Sequential programming performs one task at a
time 6 ■ Concurrent programming runs multiple tasks at the
same time 7 ■ Parallel programming executes multiples tasks
simultaneously 8 ■ Multitasking performs multiple tasks
concurrently over time 10 ■ Multithreading for performance
improvement 11

 1.3 Why the need for concurrency? 12
Present and future of concurrent programming 14

xx contents

 1.4 The pitfalls of concurrent programming 15
Concurrency hazards 16 ■ The sharing of state
evolution 18 ■ A simple real-world example: parallel
quicksort 18 ■ Benchmarking in F# 22

 1.5 Why choose functional programming
for concurrency? 23
Benefits of functional programming 25

 1.6 Embracing the functional paradigm 26

 1.7 Why use F# and C# for functional concurrent
programming? 27

 2 Functional programming techniques for concurrency 30
 2.1 Using function composition to solve

complex problems 31
Function composition in C# 31 ■ Function
composition in F# 33

 2.2 Closures to simplify functional thinking 34
Captured variables in closures with lambda
expressions 36 ■ Closures in a multithreading environment 37

 2.3 Memoization-caching technique for
program speedup 39

 2.4 Memoize in action for a fast web crawler 43

 2.5 Lazy memoization for better performance 46
Gotchas for function memoization 47

 2.6 Effective concurrent speculation to amortize the cost of
expensive computations 48
Precomputation with natural functional support 50 ■ Let the best
computation win 51

 2.7 Being lazy is a good thing 52
Strict languages for understanding concurrent behaviors 53
Lazy caching technique and thread-safe Singleton pattern 54 ■ Lazy
support in F# 56 ■ Lazy and Task, a powerful combination 56

 3 Functional data structures and immutability 59
 3.1 Real-world example: hunting the thread-unsafe object 60

.NET immutable collections: a safe solution 63 ■ .NET concurrent
collections: a faster solution 68 ■ The agent message-passing
pattern: a faster, better solution 70

 xi xicontents

 3.2 Safely sharing functional data structures
among threads 72

 3.3 Immutability for a change 73
Functional data structure for data parallelism 76 ■ Performance
implications of using immutability 76 ■ Immutability in
C# 77 ■ Immutability in F# 79 ■ Functional lists: linking
cells in a chain 80 ■ Building a persistent data structure: an
immutable binary tree 86

 3.4 Recursive functions: a natural way to iterate 88
The tail of a correct recursive function: tail-call optimization 89
Continuation passing style to optimize recursive function 90

Part 2 How to approach the different parts of a
concurrent program 95

 4 The basics of processing big data: data parallelism, part 1 97
 4.1 What is data parallelism? 98

Data and task parallelism 99 ■ The “embarrassingly parallel”
concept 100 ■ Data parallelism support in .NET 101

 4.2 The Fork/Join pattern: parallel Mandelbrot 102
When the GC is the bottleneck: structs vs. class objects 107
The downside of parallel loops 110

 4.3 Measuring performance speed 110
Amdahl’s Law defines the limit of performance improvement 111
Gustafson’s Law: a step further to measure performance
improvement 112 ■ The limitations of parallel loops: the sum of
prime numbers 112 ■ What can possibly go wrong with a simple
loop? 114 ■ The declarative parallel programming model 115

 5 PLINQ and MapReduce: data parallelism, part 2 118
 5.1 A short introduction to PLINQ 119

How is PLINQ more functional? 120 ■ PLINQ and pure
functions: the parallel word counter 121 ■ Avoiding side effects
with pure functions 123 ■ Isolate and control side effects:
refactoring the parallel word counter 124

 5.2 Aggregating and reducing data in parallel 125
Deforesting: one of many advantages to folding 127 ■ Fold in
PLINQ: Aggregate functions 129 ■ Implementing a parallel
Reduce function for PLINQ 135 ■ Parallel list comprehension in
F#: PSeq 137 ■ Parallel arrays in F# 137

xiixii contents

 5.3 Parallel MapReduce pattern 139
The Map and Reduce functions 140 ■ Using MapReduce with the
NuGet package gallery 141

 6 Real-time event streams: functional reactive programming 148
 6.1 Reactive programming: big event processing 149

 6.2 .NET tools for reactive programming 152
Event combinators—a better solution 153 ■ .NET interoperability
with F# combinators 154

 6.3 Reactive programming in .NET:
Reactive Extensions (Rx) 156
From LINQ/PLINQ to Rx 159 ■ IObservable: the dual
IEnumerable 160 ■ Reactive Extensions in action 161
Real-time streaming with RX 162 ■ From events to F#
observables 163

 6.4 Taming the event stream: Twitter emotion analysis using
Rx programming 164
SelectMany: the monadic bind operator 171

 6.5 An Rx publisher-subscriber 173
Using the Subject type for a powerful publisher-subscriber
hub 173 ■ Rx in relation to concurrency 174 ■ Implementing
a reusable Rx publisher-subscriber 175 ■ Analyzing tweet
emotions using an Rx Pub-Sub class 177 ■ Observers in
action 179 ■ The convenient F# object expression 180

 7 Task-based functional parallelism 182
 7.1 A short introduction to task parallelism 183

Why task parallelism and functional programming? 184 ■ Task
parallelism support in .NET 185

 7.2 The .NET Task Parallel Library 187
Running operations in parallel with TPL Parallel.Invoke 188

 7.3 The problem of void in C# 191
The solution for void in C#: the unit type 191

 7.4 Continuation-passing style: a functional control flow 193
Why exploit CPS? 194 ■ Waiting for a task to complete:
the continuation model 195

 xiii xiiicontents

 7.5 Strategies for composing task operations 200
Using mathematical patterns for better
composition 201 ■ Guidelines for using tasks 207

 7.6 The parallel functional Pipeline pattern 207

 8 Task asynchronicity for the win 213
 8.1 The Asynchronous Programming Model (APM) 214

The value of asynchronous programming 215 ■ Scalability and
asynchronous programming 217 ■ CPU-bound and I/O-bound
operations 218

 8.2 Unbounded parallelism with asynchronous
programming 219

 8.3 Asynchronous support in .NET 220
Asynchronous programming breaks the code structure 223
Event-based Asynchronous Programming 223

 8.4 C# Task-based Asynchronous Programming 223
Anonymous asynchronous lambdas 226 ■ Task<T> is a monadic
container 227

 8.5 Task-based Asynchronous Programming:
a case study 230
Asynchronous cancellation 234 ■ Task-based asynchronous
composition with the monadic Bind operator 238 ■ Deferring
asynchronous computation enables composition 239 ■ Retry if
something goes wrong 240 ■ Handling errors in asynchronous
operations 241 ■ Asynchronous parallel processing of the historical
stock market 243 ■ Asynchronous stock market parallel processing
as tasks complete 245

 9 Asynchronous functional programming in F# 247
 9.1 Asynchronous functional aspects 248

 9.2 What’s the F# asynchronous workflow? 248
The continuation passing style in computation
expressions 249 ■ The asynchronous workflow in action:
Azure Blob storage parallel operations 251

xivxiv contents

 9.3 Asynchronous computation expressions 256
Difference between computation expressions and
monads 257 ■ AsyncRetry: building your own
computation expression 259 ■ Extending the asynchronous
workflow 261 ■ Mapping asynchronous operation: the Async
.map functor 262 ■ Parallelize asynchronous workflows:
Async.Parallel 264 ■ Asynchronous workflow cancellation
support 268 ■ Taming parallel asynchronous operations 271

 10 Functional combinators for fluent concurrent programming 275
 10.1 The execution flow isn’t always on the happy path:

error handling 276
The problem of error handling in imperative programming 277

 10.2 Error combinators: Retry, Otherwise, and
Task.Catch in C# 279
Error handling in FP: exceptions for flow control 282 ■ Handling
errors with Task<Option<T>> in C# 284 ■ The F# AsyncOption
type: combining Async and Option 284 ■ Idiomatic F# functional
asynchronous error handling 286 ■ Preserving the exception
semantic with the Result type 287

 10.3 Taming exceptions in asynchronous operations 290
Modeling error handling in F# with Async and
Result 295 ■ Extending the F# AsyncResult type with monadic
bind operators 296

 10.4 Abstracting operations with functional combinators 300

 10.5 Functional combinators in a nutshell 301
The TPL built-in asynchronous combinators 301 ■ Exploiting
the Task.WhenAny combinator for redundancy and
interleaving 302 ■ Exploiting the Task.WhenAll combinator for
asynchronous for-each 304 ■ Mathematical pattern review: what
you’ve seen so far 305

 10.6 The ultimate parallel composition
applicative functor 308
Extending the F# async workflow with applicative functor
operators 315 ■ Applicative functor semantics in F# with infix
operators 317 ■ Exploiting heterogeneous parallel computation
with applicative functors 318 ■ Composing and executing
heterogeneous parallel computations 319 ■ Controlling flow with
conditional asynchronous combinators 321 ■ Asynchronous
combinators in action 325

 xv xvcontents

 11 Applying reactive programming everywhere with agents 328
 11.1 What’s reactive programming, and how is it useful? 330

 11.2 The asynchronous message-passing
programming model 331
Relation with message passing and immutability 334
Natural isolation 334

 11.3 What is an agent? 334
The components of an agent 335 ■ What an agent can
do 336 ■ The share-nothing approach for lock-free concurrent
programming 336 ■ How is agent-based programming
functional? 337 ■ Agent is object-oriented 338

 11.4 The F# agent: MailboxProcessor 338
The mailbox asynchronous recursive loop 340

 11.5 Avoiding database bottlenecks with F#
MailboxProcessor 341
The MailboxProcessor message type: discriminated
unions 344 ■ MailboxProcessor two-way
communication 345 ■ Consuming the AgentSQL
from C# 346 ■ Parallelizing the workflow with group
coordination of agents 347 ■ How to handle errors with
F# MailboxProcessor 349 ■ Stopping MailboxProcessor
agents—CancellationToken 350 ■ Distributing the
work with MailboxProcessor 351 ■ Caching operations
with an agent 352 ■ Reporting results from a
MailboxProcessor 357 ■ Using the thread pool to report events from
MailboxProcessor 359

 11.6 F# MailboxProcessor: 10,000 agents for a game of life 359

 12 Parallel workflow and agent programming with
TPL Dataflow 365

 12.1 The power of TPL Dataflow 366

 12.2 Designed to compose: TPL Dataflow blocks 367
Using BufferBlock<TInput> as a FIFO buffer 368 ■ Transforming
data with TransformBlock<TInput, TOutput> 369 ■ Completing
the work with ActionBlock<TInput > 370 ■ Linking dataflow
blocks 372

xvixvi contents

 12.3 Implementing a sophisticated Producer/Consumer
with TDF 372
A multiple Producer/single Consumer pattern: TPL Dataflow 372
A single Producer/multiple Consumer pattern 374

 12.4 Enabling an agent model in C# using TPL Dataflow 374
Agent fold-over state and messages: Aggregate 377
Agent interaction: a parallel word counter 378

 12.5 A parallel workflow to compress and encrypt a
large stream 382
Context: the problem of processing a large stream
of data 383 ■ Ensuring the order integrity of a
stream of messages 388 ■ Linking, propagating,
and completing 389 ■ Rules for building a TDF
workflow 390 ■ Meshing Reactive Extensions (Rx)
and TDF 391

Part 3 Modern patterns of concurrent
programming applied 395

 13 Recipes and design patterns for successful
concurrent programming 397

 13.1 Recycling objects to reduce memory consumption 398
Solution: asynchronously recycling a pool of objects 399

 13.2 Custom parallel Fork/Join operator 401
Solution: composing a pipeline of steps forming the Fork/Join
pattern 402

 13.3 Parallelizing tasks with dependencies: designing code to
optimize performance 404
Solution: implementing a dependencies graph of tasks 405

 13.4 Gate for coordinating concurrent I/O operations sharing
resources: one write, multiple reads 409
Solution: applying multiple read/write operations to shared thread-
safe resources 409

 13.5 Thread-safe random number generator 414
Solution: using the ThreadLocal object 415

 xvii xviicontents

 13.6 Polymorphic event aggregator 416
Solution: implementing a polymorphic publisher-subscriber
pattern 416

 13.7 Custom Rx scheduler to control the degree of
parallelism 419
Solution: implementing a scheduler with multiple concurrent
agents 419

 13.8 Concurrent reactive scalable client/server 422
Solution: combining Rx and asynchronous programming 423

 13.9 Reusable custom high-performing parallel
filter-map operator 431
Solution: combining filter and map parallel operations 431

 13.10 Non-blocking synchronous message-passing model 435
Solution: coordinating the payload between operations using the
agent programming model 436

 13.11 Coordinating concurrent jobs using the agent
programming model 440
Solution: implementing an agent that runs jobs with a configured
degree of parallelism 441

 13.12 Composing monadic functions 444
Solution: combining asynchronous operations using the Kleisli
composition operator 445

 14 Building a scalable mobile app with concurrent
functional programming 449

 14.1 Functional programming on the server in the
real world 450

 14.2 How to design a successful performant application 451
The secret sauce: ACD 452 ■ A different asynchronous pattern:
queuing work for later execution 453

 14.3 Choosing the right concurrent programming model 454
Real-time communication with SignalR 457

 14.4 Real-time trading: stock market high-level
architecture 457

xviii contentsxviii

 14.5 Essential elements for the stock market application 461

 14.6 Let’s code the stock market trading application 462
Benchmark to measure the scalability of the stock ticker
application 482

 appendix A Functional programming 484
 appendix B F# overview 498
 appendix C Interoperability between an F# asynchronous workflow and

.NET Task 513

 index 516

xix

preface

You’re probably reading this book, Concurrency in .NET, because you want to build
blazingly fast applications, or learn how to dramatically increase the performance of
an existing one. You care about performance because you’re dedicated to producing
faster programs, and because you feel excited when a few changes in your code make
your application faster and more responsive. Parallel programming provides endless
possibilities for passionate developers who desire to exploit new technologies. When
considering performance, the benefits of utilizing parallelism in your programming
can’t be overstated. But using imperative and object-oriented programming styles to
write concurrent code can be convoluted and introduces complexities. For this reason,
concurrent programming hasn’t been embraced as common practice writ large, lead-
ing programmers to search for other options.

When I was in college, I took a class in functional programming. At the time, I was
studying Haskell; and even though there was a steep learning curve, I enjoyed every
lesson. I remember watching the first examples and being amazed by the elegance of
the solutions as well as their simplicity. Fifteen years later, when I began searching for
other options to enhance my programs utilizing concurrency, my thoughts returned to
these lessons. This time, I was able to fully realize how powerful and useful functional
programming would be in designing my daily programs. There are several benefits to
using a functional approach in your programming style, and I discuss each of them in
this book.

xx prefacexx

My academic adventures met my professional work when I was challenged to build
a software system for the health care industry. This project involved making an appli-
cation to analyze radiological medical images. The image processing required several
steps such as image noise reduction, Gaussian algorithm, image interpolation, and
image filtering to apply color to the gray image. The application was developed using
Java and initially ran as anticipated. Eventually the department increased the demand,
as often happens, and problems started to appear. The software didn’t have any prob-
lems or bugs, but with the increasing number of images to analyze, it became slower.

Naturally, the first proposed solution to this problem was to buy a more powerful
server. Although this was a valid solution at the time, today if you buy a new machine
with the intention of gaining more CPU computation speed, you’ll be disappointed.
This is because the modern CPU has more than one core, but the speed of a single core
isn’t any faster than a single core purchased in 2007. The better and more enduring
alternative to buying a new server/computer was to introduce parallelism to take advan-
tage of multicore hardware and all of its resources, ultimately speeding up the image
processing.

In theory, this was a simple task, but in practice it wasn’t so trivial. I had to learn how
to use threads and locking; and, unfortunately, I gained firsthand experience in what a
deadlock is.

This deadlock spurred me to make massive changes to the code base of the applica-
tion. There were so many changes that I introduced bugs not even related to the original
purpose of my changes. I was frustrated, the code base was unmaintainable and fragile,
and the overall process was prone to bugs. I had to step back from the original problem
and look for a solution from a different perspective. There had to be a better way.

The tools we use have a profound (and devious!) influence on our thinking habits, and,
therefore, on our thinking abilities.

—Edsger Dijkstra

After spending a few days looking for a possible solution to solve the multithreading
madness, I realized the answer. Everything I researched and read was pointing toward
the functional paradigm. The principles I had learned in that college class so many
years ago became my mechanism for moving forward. I rewrote the core of the image
processing application to run in parallel using a functional language. Initially, transi-
tioning from an imperative to a functional style was a challenge. I had forgotten almost
all that I learned in college, and I’m not proud to say that during this experience, I
wrote code that looked very object-oriented in functional language; but it was a success-
ful decision overall. The new program compiled and ran with a dramatic performance
improvement, and the hardware resources were completely utilized and bug free.
Above all, an unanticipated and fantastic surprise was that functional programming
resulted in an impressive reduction in the number of lines of code: almost 50% fewer
than the original implementation using object-oriented language.

 xxipreface xxi

This experience made me reconsider OOP as the answer for all my programming
problems. I realized that this programming model and approach to problem solv-
ing had a limited perspective. My journey into functional programming began with a
requirement for a good concurrent programming model.

Ever since, I’ve had a keen interest in functional programming applied to multi-
threading and concurrency. Where others saw a complex problem and a source of
issues, I saw a solution in functional programming as a powerful tool that could use
the available hardware to run faster. I came to appreciate how the discipline leads to a
coherent, composable, beautiful way of writing concurrent programs.

I first had the idea for this book in July 2010, after Microsoft introduced F# as part
of Visual Studio 2010. It was already clear at that time that an increasing number of
mainstream programming languages supported the functional paradigm, including
C#, C++, Java, and Python. In 2007, C# 3.0 introduced first-class functions to the lan-
guage, along with new constructs such as lambda expressions and type inference to
allow programmers to introduce functional programming concepts. Soon to follow was
Language Integrate Query (LINQ), permitting a declarative programming style.

In particular, the .NET platform has embraced the functional world. With the intro-
duction of F#, Microsoft has full-featured languages that support both object-oriented
and functional paradigms. Additionally, object-oriented languages like C# are becom-
ing more hybrid and bridging the gap between different programming paradigms,
allowing for both programming styles.

Furthermore, we’re facing the multicore era, where the power of CPUs is measured
by the number of cores available, instead of clock cycles per second. With this trend, sin-
gle-threaded applications won’t achieve improved speed on multicore systems unless
the applications integrate parallelism and employ algorithms to spread the work across
multiple cores.

It has become clear to me that multithreading is in demand, and it has ignited my
passion to bring this programming approach to you. This book combines the power
of concurrent programming and functional paradigm to write readable, more mod-
ular, maintainable code in both the C# and F# languages. Your code will benefit from
these techniques to function at peak performance with fewer lines of code, resulting in
increased productivity and resilient programs.

It’s an exciting time to start developing multithreaded code. More than ever, software
companies are making tools and capabilities available to choose the right programming
style without compromise. The initial challenges of learning parallel programming will
diminish quickly, and the reward for your perseverance is infinite. No matter what your
field of expertise is, whether you’re a backend developer or a frontend web developer,
or if you build cloud-based applications or video games, the use of parallelism to obtain
better performance and to build scalable applications is here to stay.

This book draws on my experience with functional programming for writing concur-
rent programs in .NET using both C# and F#. I believe that functional programming is

xxii prefacexxii

becoming the de facto way to write concurrent code, to coordinate asynchronous and
parallel programs in .NET, and that this book will give you everything you need to be
ready and master this exciting world of multicore computers.

xxiii

acknowledgments

Writing a book is a daunting feat for anyone. Doing so in your secondary language is
infinitely more challenging and intimidating. For me, you don’t dare entertain dreams
such as this without being surrounded by a village of support. I would like to thank all
of those who have supported me and participated in making this book a reality.

My adventure with F# started in 2013, when I attended a FastTrack to F# in NYC. I
met Tomas Petricek, who inspired me to fall headfirst into the F# world. He welcomed
me into the community and has been a mentor and confidant ever since.

I owe a huge debt of gratitude to the fantastic staff at Manning Publications. The
heavy lifting for this book began 15 months ago with my development editor, Dan
Maharry, and continued with Marina Michaels, both of whom have been patient and
sage guides in this awesome task.

Thank you to the many technical reviewers, especially technical development editor
Michael Lund and technical proofer Viorel Moisei. Your critical analysis was essential to
ensuring that I communicated on paper all that is in my head, much of which was at risk
of being “lost in translation.” Thank you also to those who participated in Manning’s
MEAP program and provided support as peer reviewers: Andy Kirsch, Anton Herzog,
Chris Bolyard, Craig Fullerton, Gareth van der Berg, Jeremy Lange, Jim Velch, Joel
Kotarski, Kevin Orr, Luke Bearl, Pawel Klimczyk, Ricardo Peres, Rohit Sharma, Stefano
Driussi, and Subhasis Ghosh.

xxiv acknowledgmentsxxiv

I received endless support from the members of the F# community who have rallied
behind me along the way, especially Sergey Tihon, who spent countless hours as my
sounding board.

And thank you to my family and friends who have cheered me on and patiently
waited for me to join the world again for social weekends, dinner outings, and the rest.

Above all, I would like to acknowledge my wife, who supports my every endeavor and
has never allowed me to shy away from a challenge.

I must also recognize my dedicated and loyal pugs, Bugghina and Stellina, who were
always at my side or on my lap while I was writing this book deep into the night. It was
also during our long evening walks that I was able to clear my head and find the best
ideas for this book.

xxv

about this book

Concurrency in .NET provides insights into the best practices necessary to build con-
current and scalable programs in .NET, illuminating the benefits of the functional
paradigm to give you the right tools and principles for handling concurrency easily
and correctly. Ultimately, armed with your newfound skills, you’ll have the knowledge
needed to become an expert at delivering successful high-performance solutions.

Who should read this book
If you’re writing multithreaded code in .NET, this book can help. If you’re interested
in using the functional paradigm to ease the concurrent programming experience to
maximize the performance of your applications, this book is an essential guide. This
book will benefit any .NET developers who want to write concurrent, reactive, and
asynchronous applications that scale and perform by self-adapting to the current hard-
ware resources wherever the program runs.

This book is also suitable for developers who are curious about exploiting functional
programming to implement concurrent techniques. Prior knowledge or experience
with the functional paradigm isn’t required, and the basic concepts are covered in
appendix A.

The code examples use both the C# and F# languages. Readers familiar with C# will
feel comfortable right away. Familiarity with the F# language isn’t strictly required, and

xxvi about this bookxxvi

a basic overview is covered in appendix B. Functional programming experience and
knowledge isn’t required; the necessary concepts are included in the book.

A good working knowledge of .NET is assumed. You should have moderate experi-
ence in working with .NET collections and knowledge of the .NET Framework, with
a minimum of .NET version 3.5 required (LINQ, Action<>, and Func<> delegates).
Finally, this book is suitable for any platform supported by .NET (including .NET Core).

How this book is organized: a roadmap
The book’s 14 chapters are divided into 3 parts. Part 1 introduces functional concur-
rent programming concepts and the skills you need in order to understand the func-
tional aspects of writing multithreaded programs:

¡	Chapter 1 highlights the main foundations and purposes behind concurrent
programming and the reasons for using functional programming to write multi-
threaded applications.

¡	Chapter 2 explores several functional programming techniques to improve the
performance of a multithreaded application. The purpose of this chapter is to
provide concepts used during the rest of the book, and to make you familiar with
powerful ideas that have originated from the functional paradigm.

¡	Chapter 3 provides an overview of the functional concept of immutability. It
explains how immutability is used to write predictable and correct concurrent
programs, and how it’s applied to implement and use functional data structures,
which are intrinsically thread safe.

Part 2 dives into the different concurrent programming models of the functional par-
adigm. We’ll explore subjects such as the Task Parallel Library (TPL), and implement-
ing parallel patterns such as Fork/Join, Divide and Conquer, and MapReduce. Also
discussed are declarative composition, high-level abstraction in asynchronous opera-
tions, the agent programming model, and the message-passing semantic:

¡	Chapter 4 covers the basics of processing a large amount of data in parallel,
including patterns such as Fork/Join.

¡	Chapter 5 introduces more advanced techniques for parallel processing massive
data, such as aggregating and reducing data in parallel and implementing a par-
allel MapReduce pattern.

¡	Chapter 6 provides details of the functional techniques to process real-time
streams of events (data), using functional higher-order operators with .NET
Reactive Extensions to compose asynchronous event combinators. The tech-
niques learned are used to implement a concurrent friendly and reactive pub-
lisher-subscriber pattern.

¡	Chapter 7 explains the task-based programming model applied to functional
programming to implement concurrent operations using the Monadic pattern
based on a continuation-passing style. This technique is then used to build a con-
current- and functional-based pipeline.

 xxviiabout this book xxvii

¡	Chapter 8 concentrates on the C# asynchronous programming model to imple-
ment unbounded parallel computations. This chapter also examines error han-
dling and compositional techniques for asynchronous operations.

¡	Chapter 9 focuses on the F# asynchronous workflow, explaining how the deferred
and explicit evaluation of this model permits a higher compositional semantic.
Then, we explore how to implement custom computation expressions to raise
the level of abstraction, resulting in a declarative programming style.

¡	Chapter 10 wraps up the previous chapters and culminates in implementing
combinators and patterns such as Functor, Monad, and Applicative to compose
and run multiple asynchronous operations and handle errors, while avoiding
side effects.

¡	Chapter 11 delves into reactive programming using the message-passing pro-
gramming model. It covers the concept of natural isolation as a complementary
technique with immutability for building concurrent programs. This chapter
focuses on the F# MailboxProcessor for distributing parallel work using the
agent model and the share-nothing approach.

¡	Chapter 12 explains the agent programming model using the .NET TPL Data-
flow, with examples in C#. You’ll implement both a stateless and stateful agent
using C# and run multiple computations in parallel that communicate with each
other using (passing) messages in a pipeline style

Part 3 puts into practice all the functional concurrent programming techniques
learned in the previous chapters:

¡	Chapter 13 contains a set of reusable and useful recipes to solve complex con-
current issues based on real-world experiences. The recipes use the functional
patterns you’ve seen throughout the book.

¡	Chapter 14 presents a full application designed and implemented using the func-
tional concurrent patterns and techniques learned in the book. You’ll build a
highly scalable, responsive server application, and a reactive client-side program.
Two versions are presented: one using Xamarin Visual Studio for an iOS (iPad)-
based program, and one using WPF. The server-side application uses a combina-
tion of different programming models, such as asynchronous, agent-based, and
reactive, to ensure maximum scalability.

The book also has three appendices:

¡	Appendix A summarizes the concepts of functional programming. This appen-
dix provides basic theory about functional techniques used in the book.

¡	Appendix B covers the basic concepts of F#. It’s a basic overview of F# to make you
feel comfortable and help you gain familiarity with this programming language.

¡	Appendix C illustrates few techniques to ease the interoperability between the F#
asynchronous workflow and the .NET task in C#.

xxviii about this bookxxviii

About the code
This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light the topic under discussion.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In some cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

The source code for this book is available to download from the publisher’s web-
site (www.manning.com/books/concurrency-in-dotnet) and from GitHub (https://
github.com/rikace/fConcBook). Most of the code is provided in both C# and F# ver-
sions. Instructions for using this code are provided in the README file included in the
repository root.

Book forum
Purchase of Concurrency in .NET includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the
forum, go to https://forums.manning.com/forums/concurrency-in-dotnet. You can
also learn more about Manning’s forums and the rules of conduct at https://forums.
manning.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions, lest his interest stray! The forum and the
archives of previous discussions will be accessible from the publisher’s website as long as
the book is in print.

xxix

about the author

Riccardo Terrell is a seasoned software engineer and Microsoft
MVP who is passionate about functional programming. He has
over 20 years’ experience delivering cost-effective technology solu-
tions in a competitive business environment.

In 1998, Riccardo started his own software business in Italy,
where he specialized in providing customized medical software to
his clients. In 2007, Riccardo moved to the United States and ever

since has been working as a .NET senior software developer and senior software archi-
tect to deliver cost-effective technology solutions in the business environment. Riccardo
is dedicated to integrating advanced technology tools to increase internal efficiency,
enhance work productivity, and reduce operating costs.

He is well known and actively involved in the functional programming community,
including .NET meetups and international conferences. Riccardo believes in multi-
paradigm programming as a mechanism to maximize the power of code. You can keep
up with Riccardo and his coding adventures on his blog, www.rickyterrell.com.

xxxi

about the cover illustration

The figure on the cover of Concurrency in .NET is a man from a village in Abyssinia,
today called Ethiopia. The illustration is taken from a Spanish compendium of regional
dress customs first published in Madrid in 1799, engraved by Manuel Albuerne (1764-
1815). The book’s title page states

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo
desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy util y
en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world, designed
and printed with great exactitude by R.M.V.A.R. This work is very useful especially for
those who hold themselves to be universal travelers

Although little is known of the engraver, designers, and workers who colored this
illustration by hand, the exactitude of their execution is evident in this drawing. The
Abyssinian is just one of many figures in this colorful collection. Their diversity speaks
vividly of the uniqueness and individuality of the world’s towns and regions just 200
years ago. This was a time when the dress codes of two regions separated by a few dozen
miles identified people uniquely as belonging to one or the other. The collection
brings to life a sense of isolation and distance of that period—and of every other his-
toric period except our own hyperkinetic present.

xxxii about the cover illustrationxxxii

Dress codes have changed since then, and the diversity by region, so rich at the time,
has faded away. It’s now often hard to tell the inhabitant of one continent from another.
Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a
more varied personal life—or a more varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life of two centu-
ries ago‚ brought back to life by the pictures from this collection.

Part 1

Benefits of functional
programming applicable to

concurrent programs

Functional programming is a programming paradigm that focuses on abstrac-
tion and composition. In these first three chapters you’ll learn how to treat
computations as the evaluation of expressions to avoid the mutation of data. To
enhance concurrent programming, the functional paradigm provides tools and
techniques to write deterministic programs. Output only depends upon input
and not on the state of the program at execution time. The functional paradigm
also facilitates writing code with fewer bugs by emphasizing separation of con-
cerns between purely functional aspects, isolating side effects, and controlling
unwanted behaviors.

This part of the book introduces the main concepts and benefits of functional
programming applicable to concurrent programs. Concepts discussed include
programming with pure functions, immutability, laziness, and composition.

3

1Functional concurrency
foundations

This chapter covers
¡	Why you need concurrency

¡	Differences between concurrency, parallelism,
and multithreading

¡	Avoiding common pitfalls when writing
concurrent applications

¡	Sharing variables between threads

¡	Using the functional paradigm to develop
concurrent programs

In the past, software developers were confident that, over time, their programs
would run faster than ever. This proved true over the years due to improved hard-
ware that enabled programs to increase speed with each new generation.

For the past 50 years, the hardware industry has experienced uninterrupted
improvements. Prior to 2005, the processor evolution continuously delivered faster
single-core CPUs, until finally reaching the limit of CPU speed predicted by Gordon
Moore. Moore, a computer scientist, predicted in 1965 that the density and speed of
transistors would double every 18 months before reaching a maximum speed beyond
which technology couldn’t advance. The original prediction for the increase of CPU

4 chapter 1 Functional concurrency foundations

speed presumed a speed-doubling trend for 10 years. Moore’s prediction, known as
Moore’s Law, was correct—except that progress continued for almost 50 years (decades
past his estimate).

Today, the single-processor CPU has nearly reached the speed of light, all the while
generating an enormous amount of heat due to energy dissipation; this heat is the lim-
iting factor to further improvements.

CPU has nearly reached the speed of light
The speed of light is the absolute physical limit for electric transmission, which is also
the limit for electric signals in the CPU. No data propagation can be transmitted faster
than the light medium. Consequentially, signals cannot propagate across the surface of
the chip fast enough to allow higher speeds. Modern chips have a base cycle frequency
of roughly 3.5 GHz, meaning 1 cycle every 1/3,500,000,000 seconds, or 2.85 nanosec-
onds. The speed of light is about 3e8 meters per second, which means that data can be
propagated around 0.30 cm (about a foot) in a nanosecond. But the bigger the chip, the
longer it takes for data to travel through it.

A fundamental relationship exists between circuit length (CPU physical size) and pro-
cessing speed: the time required to perform an operation is a cycle of circuit length and
the speed of light. Because the speed of light is constant, the only variable is the size of
the CPU; that is, you need a small CPU to increase the speed, because shorter circuits
require smaller and fewer switches. The smaller the CPU, the faster the transmission.
In fact, creating a smaller chip was the primary approach to building faster CPUs with
higher clock rates. This was done so effectively that we’ve nearly reached the physical
limit for improving CPU speed.

For example, if the clock speed is increased to 100 GHz, a cycle will be 0.01 nanosec-
onds, and the signals will only propagate 3 mm in this time. Therefore, a CPU core ideally
needs to be about 0.3 mm in size. This route leads to a physical size limitation. In addi-
tion, this high frequency rate in such a small CPU size introduces a thermal problem in
the equation. Power in a switching transistor is roughly the frequency ^2, so in moving
from 4 GHz to 6 GHz there is a 225% increase of energy (which translates to heat). The
problem besides the size of the chip becomes its vulnerability to suffer thermal damage
such as changes in crystal structure.

Moore’s prediction about transistor speed has come to fruition (transistors cannot run
any faster) but it isn’t dead (modern transistors are increasing in density, providing
opportunities for parallelism within the confines of that top speed). The combination
of multicore architecture and parallel programming models is keeping Moore’s Law
alive! As CPU single-core performance improvement stagnates, developers adapt by
segueing into multicore architecture and developing software that supports and inte-
grates concurrency.

The processor revolution has begun. The new trend in multicore processor design
has brought parallel programming into the mainstream. Multicore processor architec-
ture offers the possibility of more efficient computing, but all this power requires addi-
tional work for developers. If programmers want more performance in their code, they

 5What you’ll learn from this book

must adapt to new design patterns to maximize hardware utilization, exploiting multi-
ple cores through parallelism and concurrency.

In this chapter, we’ll cover general information about concurrency by examining
several of its benefits and the challenges of writing traditional concurrent programs.
Next, we’ll introduce functional paradigm concepts that make it possible to overcome
traditional limitations by using simple and maintainable code. By the end of this chap-
ter, you’ll understand why concurrency is a valued programming model, and why the
functional paradigm is the right tool for writing correct concurrent programs.

1.1 What you’ll learn from this book
In this book I’ll look at considerations and challenges for writing concurrent multi-
threaded applications in a traditional programming paradigm. I’ll explore how to
successfully address these challenges and avoid concurrency pitfalls using the func-
tional paradigm. Next, I’ll introduce the benefits of using abstractions in functional
programming to create declarative, simple-to-implement, and highly performant con-
current programs. Over the course of this book, we’ll examine complex concurrent
issues providing an insight into the best practices necessary to build concurrent and
scalable programs in .NET using the functional paradigm. You’ll become familiar with
how functional programming helps developers support concurrency by encouraging
immutable data structures that can be passed between threads without having to worry
about a shared state, all while avoiding side effects. By the end of the book you’ll master
how to write more modular, readable, and maintainable code in both C# and F# lan-
guages. You’ll be more productive and proficient while writing programs that function
at peak performance with fewer lines of code. Ultimately, armed with your newfound
skills, you’ll have the knowledge needed to become an expert at delivering successful
high-performance solutions.

Here’s what you’ll learn:

¡	How to combine asynchronous operations with the Task Parallel Library
¡	How to avoid common problems and troubleshoot your multithreaded and asyn-

chronous applications
¡	Knowledge of concurrent programming models that adopt the functional para-

digm (functional, asynchronous, event-driven, and message passing with agents
and actors)

¡	How to build high-performance, concurrent systems using the functional paradigm
¡	How to express and compose asynchronous computations in a declarative style
¡	How to seamlessly accelerate sequential programs in a pure fashion by using

data-parallel programming
¡	How to implement reactive and event-based programs declaratively with Rx-style

event streams
¡	How to use functional concurrent collections for building lock-free multi-

threaded programs

6 chapter 1 Functional concurrency foundations

¡	How to write scalable, performant, and robust server-side applications
¡	How to solve problems using concurrent programming patterns such as the

Fork/Join, parallel aggregation, and the Divide and Conquer technique
¡	How to process massive data sets with parallel streams and parallel Map/Reduce

implementations

This book assumes you have knowledge of general programming, but not functional
programming. To apply functional concurrency in your coding, you only need a subset
of the concepts from functional programming, and I’ll explain what you need to know
along the way. In this fashion, you’ll gain the many benefits of functional concurrency
in a shorter learning curve, focused on what you can use right away in your day-to-day
coding experiences.

1.2 Let’s start with terminology
This section defines terms related to the topic of this book, so we start on common
ground. In computer programming, some terms (such as concurrency, parallelism, and
multithreading) are used in the same context, but have different meanings. Due to their
similarities, the tendency to treat these terms as the same thing is common, but it is
not correct. When it becomes important to reason about the behavior of a program,
it’s crucial to make a distinction between computer programming terms. For example,
concurrency is, by definition, multithreading, but multithreading isn’t necessarily con-
current. You can easily make a multicore CPU function like a single-core CPU, but not
the other way around.

This section aims to establish a common ground about the definitions and terminol-
ogies related to the topic of this book. By the end of this section, you’ll learn the mean-
ing of these terms:

¡	Sequential programming
¡	Concurrent programming
¡	Parallel programming
¡	Multitasking
¡	Multithreading

1.2.1 Sequential programming performs one task at a time

Sequential programming is the act of accomplishing things in steps. Let’s consider a sim-
ple example, such as getting a cup of cappuccino at the local coffee shop. You first
stand in line to place your order with the lone barista. The barista is responsible for
taking the order and delivering the drink; moreover, they are able to make only one
drink at a time so you must wait patiently—or not—in line before you order. Making a
cappuccino involves grinding the coffee, brewing the coffee, steaming the milk, froth-
ing the milk, and combining the coffee and milk, so more time passes before you get
your cappuccino. Figure 1.1 shows this process.

 7Let’s start with terminology

Combine coffee
and milk

Froth milk

Steam milk

Brew coffee

Grind coffee

Figure 1.1 For each person in line, the barista is sequentially repeating the same set of instructions
(grind coffee, brew coffee, steam milk, froth milk, and combine the coffee and the milk to make a
cappuccino).

Figure 1.1 is an example of sequential work, where one task must be completed before
the next. It is a convenient approach, with a clear set of systematic (step-by-step)
instructions of what to do and when to do it. In this example, the barista will likely
not get confused and make any mistakes while preparing the cappuccino because the
steps are clear and ordered. The disadvantage of preparing a cappuccino step-by-step
is that the barista must wait during parts of the process. While waiting for the coffee to
be ground or the milk to be frothed, the barista is effectively inactive (blocked). The
same concept applies to sequential and concurrent programming models. As shown
in figure 1.2, sequential programming involves a consecutive, progressively ordered
execution of processes, one instruction at a time in a linear fashion.

 Process 1 Process 2 Process 3 Process 4 Action

Figure 1.2 Typical sequential coding involving a consecutive, progressively ordered execution of
processes

In imperative and object-oriented programming (OOP) we tend to write code that
behaves sequentially, with all attention and resources focused on the task currently
running. We model and execute the program by performing an ordered set of state-
ments, one after another.

1.2.2 Concurrent programming runs multiple tasks at the same time

Suppose the barista prefers to initiate multiple steps and execute them concurrently?
This moves the customer line along much faster (and, consequently, increases gar-
nered tips). For example, once the coffee is ground, the barista can start brewing the
espresso. During the brewing, the barista can take a new order or start the process of
steaming and frothing the milk. In this instance, the barista gives the perception of

8 chapter 1 Functional concurrency foundations

doing multiple operations at the same time (multitasking), but this is only an illusion.
More details on multitasking are covered in section 1.2.4. In fact, because the barista
has only one espresso machine, they must stop one task to start or continue another,
which means the barista executes only one task at a time, as shown in figure 1.3. In
modern multicore computers, this is a waste of valuable resources.

Combine coffee
and milk

Steam milk

Froth milk

Brew coffee

Grind coffee

Figure 1.3 The barista switches between the operations (multitasking) of preparing the coffee (grind
and brew) and preparing the milk (steam and froth). As a result, the barista executes segments of
multiple tasks in an interleaved manner, giving the illusion of multitasking. But only one operation is
executed at a time due to the sharing of common resources.

Concurrency describes the ability to run several programs or multiple parts of a program
at the same time. In computer programming, using concurrency within an application
provides actual multitasking, dividing the application into multiple and independent
processes that run at the same time (concurrently) in different threads. This can hap-
pen either in a single CPU core or in parallel, if multiple CPU cores are available. The
throughput (the rate at which the CPU processes a computation) and responsiveness
of the program can be improved through the asynchronous or parallel execution of a
task. An application that streams video content is concurrent, for example, because it
simultaneously reads the digital data from the network, decompresses it, and updates
its presentation onscreen.

Concurrency gives the impression that these threads are running in parallel and
that different parts of the program can run simultaneously. But in a single-core envi-
ronment, the execution of one thread is temporarily paused and switched to another
thread, as is the case with the barista in figure 1.3. If the barista wishes to speed up pro-
duction by simultaneously performing several tasks, then the available resources must
be increased. In computer programming, this process is called parallelism.

1.2.3 Parallel programming executes multiples tasks simultaneously

From the developer’s prospective, we think of parallelism when we consider the ques-
tions, “How can my program execute many things at once?” or “How can my program
solve one problem faster?” Parallelism is the concept of executing multiple tasks at once
concurrently, literally at the same time on different cores, to improve the speed of

 9Let’s start with terminology

the application. Although all parallel programs are concurrent, we have seen that not
all concurrency is parallel. That’s because parallelism depends on the actual runtime
environment, and it requires hardware support (multiple cores). Parallelism is achiev-
able only in multicore devices (figure 1.4) and is the means to increasing performance
and throughput of a program.

Core 1

Core 2

Core 3

Core 4

Processor

To return to the coffee shop example, imagine that you’re the manager and wish to
reduce the waiting time for customers by speeding up drink production. An intuitive
solution is to hire a second barista and set up a second coffee station. With two baristas
working simultaneously, the queues of customers can be processed independently and
in parallel, and the preparation of cappuccinos (figure 1.5) speeds up.

Combine coffee
and milk

Froth milk

Steam milk

Brew coffee

Grind coffee

Figure 1.5 The production of cappuccinos is faster because two baristas can work in parallel with two
coffee stations.

No break in production results in a benefit in performance. The goal of parallelism is
to maximize the use of all available computational resources; in this case, the two baris-
tas are working in parallel at separate stations (multicore processing).

Figure 1.4 Only multicore machines allow parallelism for
simultaneously executing different tasks. In this figure, each
core is performing an independent task.

10 chapter 1 Functional concurrency foundations

Parallelism can be achieved when a single task is split into multiple independent
subtasks, which are then run using all the available cores. In figure 1.5, a multicore
machine (two coffee stations) allows parallelism for simultaneously executing different
tasks (two busy baristas) without interruption.

The concept of timing is fundamental for simultaneously executing operations in
parallel. In such a program, operations are concurrent if they can be executed in parallel,
and these operations are parallel if the executions overlap in time (see figure 1.6).

Start

End

For i = 0 to n
Evaluate model

Sequential approach

Start

End

Evaluate
model

Evaluate
model

Evaluate
model

Evaluate
model

Parallel approach

Figure 1.6 Parallel computing is a type of computation in which many calculations are carried out
simultaneously, operating on the principle that large problems can often be divided into smaller ones,
which are then solved at the same time.

Parallelism and concurrency are related programming models. A parallel program
is also concurrent, but a concurrent program isn’t always parallel, with parallel pro-
gramming being a subset of concurrent programming. While concurrency refers to
the design of the system, parallelism relates to the execution. Concurrent and paral-
lel programming models are directly linked to the local hardware environment where
they’re performed.

1.2.4 Multitasking performs multiple tasks concurrently over time

Multitasking is the concept of performing multiple tasks over a period of time by exe-
cuting them concurrently. We’re familiar with this idea because we multitask all the
time in our daily lives. For example, while waiting for the barista to prepare our cap-
puccino, we use our smartphone to check our emails or scan a news story. We’re doing
two things at one time: waiting and using a smartphone.

Computer multitasking was designed in the days when computers had a single CPU
to concurrently perform many tasks while sharing the same computing resources. Ini-
tially, only one task could be executed at a time through time slicing of the CPU. (Time
slice refers to a sophisticated scheduling logic that coordinates execution between mul-
tiple threads.) The amount of time the schedule allows a thread to run before sched-
uling a different thread is called thread quantum. The CPU is time sliced so that each
thread gets to perform one operation before the execution context is switched to
another thread. Context switching is a procedure handled by the operating system to

 11Let’s start with terminology

multitask for optimized performance (figure 1.7). But in a single-core computer, it’s
possible that multitasking can slow down the performance of a program by introducing
extra overhead for context switching between threads.

Context switching on
a single-core machine

Figure 1.7 Each task has a different shade, indicating that the context switch in a single-core machine
gives the illusion that multiple tasks run in parallel, but only one task is processed at a time.

There are two kinds of multitasking operating systems:

¡	Cooperative multitasking systems, where the scheduler lets each task run until it fin-
ishes or explicitly yields execution control back to the scheduler

¡	Preemptive multitasking systems (such as Microsoft Windows), where the scheduler
prioritizes the execution of tasks, and the underlying system, considering the pri-
ority of the tasks, switches the execution sequence once the time allocation is
completed by yielding control to other tasks

Most operating systems designed in the last decade have provided preemptive mul-
titasking. Multitasking is useful for UI responsiveness to help avoid freezing the UI
during long operations.

1.2.5 Multithreading for performance improvement

Multithreading is an extension of the concept of multitasking, aiming to improve
the performance of a program by maximizing and optimizing computer resources.
Multithreading is a form of concurrency that uses multiple threads of execution.
Multithreading implies concurrency, but concurrency doesn’t necessarily imply multi-
threading. Multithreading enables an application to explicitly subdivide specific tasks
into individual threads that run in parallel within the same process.

NOTE A process is an instance of a program running within a computer system.
Each process has one or more threads of execution, and no thread can exist
outside a process.

A thread is a unit of computation (an independent set of programming instructions
designed to achieve a particular result), which the operating system scheduler inde-
pendently executes and manages. Multithreading differs from multitasking: unlike
multitasking, with multithreading the threads share resources. But this “sharing
resources” design presents more programming challenges than multitasking does. We
discuss the problem of sharing variables between threads later in this chapter in sec-
tion 1.4.1.

12 chapter 1 Functional concurrency foundations

The concepts of parallel and multithreading programming are closely related. But
in contrast to parallelism, multithreading is hardware-agnostic, which means that it can
be performed regardless of the number of cores. Parallel programming is a superset
of multithreading. You could use multithreading to parallelize a program by sharing
resources in the same process, for example, but you could also parallelize a program by
executing the computation in multiple processes or even in different computers. Fig-
ure 1.8 shows the relationship between these terms.

Computer with two or more CPUs

Multitasking

Concurrency Concurrency

Computer with one CPU

Multitasking

Concurrency Concurrency

Multithreading

Parallelism

Multithreading

Parallelism

Figure 1.8 Relationship between concurrency, parallelism, multithreading, and multitasking in a single
and a multicore device

To summarize:

¡	Sequential programming refers to a set of ordered instructions executed one at a
time on one CPU.

¡	Concurrent programming handles several operations at one time and doesn’t
require hardware support (using either one or multiple cores).

¡	Parallel programming executes multiple operations at the same time on multiple
CPUs. All parallel programs are concurrent, running simultaneously, but not all
concurrency is parallel. The reason is that parallelism is achievable only on multi-
core devices.

¡	Multitasking concurrently performs multiple threads from different processes.
Multitasking doesn’t necessarily mean parallel execution, which is achieved only
when using multiple CPUs.

¡	Multithreading extends the idea of multitasking; it’s a form of concurrency that
uses multiple, independent threads of execution from the same process. Each
thread can run concurrently or in parallel, depending on the hardware support.

1.3 Why the need for concurrency?
Concurrency is a natural part of life—as humans we’re accustomed to multitasking.
We can read an email while drinking a cup of coffee, or type while listening to our
favorite song. The main reason to use concurrency in an application is to increase

 13Why the need for concurrency?

performance and responsiveness, and to achieve low latency. It’s common sense that if
one person does two tasks one after another it would take longer than if two people did
those same two tasks simultaneously.

It’s the same with applications. The problem is that most applications aren’t written
to evenly split the tasks required among the available CPUs. Computers are used in
many different fields, such as analytics, finance, science, and health care. The amount
of data analyzed is increasing year by year. Two good illustrations are Google and Pixar.

In 2012, Google received more than 2 million search queries per minute; in 2014, that
number more than doubled. In 1995, Pixar produced the first completely computer-
generated movie, Toy Story. In computer animation, myriad details and information must
be rendered for each image, such as shading and lighting. All this information changes
at the rate of 24 frames per second. In a 3D movie, an exponential increase in changing
information is required.

The creators of Toy Story used 100 connected dual-processor machines to create their
movie, and the use of parallel computation was indispensable. Pixar’s tools evolved
for Toy Story 2; the company used 1,400 computer processors for digital movie editing,
thereby vastly improving digital quality and editing time. In the beginning of 2000,
Pixar’s computer power increased even more, to 3,500 processors. Sixteen years later,
the computer power used to process a fully animated movie reached an absurd 24,000
cores. The need for parallel computing continues to increase exponentially.

Let’s consider a processor with N (as any number) running cores. In a single-threaded
application, only one core runs. The same application executing multiple threads will be
faster, and as the demand for performance grows, so too will the demand for N to grow,
making parallel programs the standard programming model choice for the future.

If you run an application in a multicore machine that wasn’t designed with con-
currency in mind, you’re wasting computer productivity because the application as
it sequences through the processes will only use a portion of the available computer
power. In this case, if you open Task Manager, or any CPU performance counter, you’ll
notice only one core running high, possibly at 100%, while all the other cores are
underused or idle. In a machine with eight cores, running non-concurrent programs
means the overall use of the resources could be as low as 15% (figure 1.9).

Figure 1.9 Windows Task Manager
shows a program poorly utilizing CPU
resources.

14 chapter 1 Functional concurrency foundations

Such waste of computing power unequivocally illustrates that sequential code isn’t
the correct programming model for multicore processers. To maximize the use of the
available computational resources, Microsoft’s .NET platform provides parallel execu-
tion of code through multithreading. By using parallelism, a program can take full
advantage of the resources available, as illustrated by the CPU performance counter in
figure 1.10, where you’ll notice that all the processor cores are running high, possibly
at 100%. Current hardware trends predict more cores instead of faster clock speeds;
therefore, developers have no choice but to embrace this evolution and become paral-
lel programmers.

1.3.1 Present and future of concurrent programming

Mastering concurrency to deliver scalable programs has become a required skill. Com-
panies are interested in hiring and investing in engineers who have a deep knowledge
of writing concurrent code. In fact, writing correct parallel computation can save
time and money. It’s cheaper to build scalable programs that use the computational
resources available with fewer servers, than to keep buying and adding expensive hard-
ware that is underused to reach the same level of performance. In addition, more
hardware requires more maintenance and electric power to operate.

This is an exciting time to learn to write multithreaded code, and it’s rewarding to
improve the performance of your program with the functional programming (FP)
approach. Functional programming is a programming style that treats computation
as the evaluation of expressions and avoids changing-state and mutable data. Because
immutability is the default, and with the addition of a fantastic composition and declar-
ative programming style, FP makes it effortless to write concurrent programs. More
details follow in section1.5.

While it’s a bit unnerving to think in a new paradigm, the initial challenge of learning
parallel programming diminishes quickly, and the reward for perseverance is infinite.
You’ll find something magical and spectacular about opening the Windows Task Man-
ager and proudly noticing that the CPU usage spikes to 100% after your code changes.
Once you become familiar and comfortable with writing highly scalable systems using
the functional paradigm, it will be difficult to go back to the slow style of sequential code.

Concurrency is the next innovation that will dominate the computer industry, and it
will transform how developers write software. The evolution of software requirements

Figure 1.10 A program written with
concurrency in mind can maximize
CPU resources, possibly up to 100%.

 15The pitfalls of concurrent programming

in the industry and the demand for high-performance software that delivers great user
experience through non-blocking UIs will continue to spur the need for concurrency.
In lockstep with the direction of hardware, it’s evident that concurrency and parallel-
ism are the future of programming.

1.4 The pitfalls of concurrent programming
Concurrent and parallel programming are without doubt beneficial for rapid respon-
siveness and speedy execution of a given computation. But this gain of performance
and reactive experience comes with a price. Using sequential programs, the execu-
tion of the code takes the happy path of predictability and determinism. Conversely,
multithreaded programming requires commitment and effort to achieve correctness.
Furthermore, reasoning about multiple executions running simultaneously is difficult
because we’re used to thinking sequentially.

Determinism
Determinism is a fundamental requirement in building software as computer programs
are often expected to return identical results from one run to the next. But this prop-
erty becomes hard to resolve in a parallel execution. External circumstances, such as
the operating system scheduler or cache coherence (covered in chapter 4), could influ-
ence the execution timing and, therefore, the order of access for two or more threads
and modify the same memory location. This time variant could affect the outcome of the
program.

The process of developing parallel programs involves more than creating and spawn-
ing multiple threads. Writing programs that execute in parallel is demanding and
requires thoughtful design. You should design with the following questions in mind:

¡	How is it possible to use concurrency and parallelism to reach incredible compu-
tational performance and a highly responsive application?

¡	How can such programs take full advantage of the power provided by a multicore
computer?

¡	How can communication with and access to the same memory location between
threads be coordinated while ensuring thread safety? (A method is called thread-
safe when the data and state don’t get corrupted if two or more threads attempt to
access and modify the data or state at the same time.)

¡	How can a program ensure deterministic execution?
¡	How can the execution of a program be parallelized without jeopardizing the

quality of the final result?

These aren’t easy questions to answer. But certain patterns and techniques can help.
For example, in the presence of side effects,1 the determinism of the computation
is lost because the order in which concurrent tasks execute becomes variable. The

1 A side effect arises when a method changes some state from outside its scope, or it communicates with
the “outside world,” such as calling a database or writing to the file system.

16 chapter 1 Functional concurrency foundations

obvious solution is to avoid side effects in favor of pure functions. You’ll learn these
techniques and practices during the course of the book.

1.4.1 Concurrency hazards

Writing concurrent programs isn’t easy, and many sophisticated elements must be con-
sidered during program design. Creating new threads or queuing multiple jobs on the
thread pool is relatively simple, but how do you ensure correctness in the program?
When many threads continually access shared data, you must consider how to safeguard
the data structure to guarantee its integrity. A thread should write and modify a memory
location atomically,2 without interference by other threads. The reality is that programs
written in imperative programming languages or in languages with variables whose val-
ues can change (mutable variables) will always be vulnerable to data races, regardless of
the level of memory synchronization or concurrent libraries used.

NOTE A data race occurs when two or more threads in a single process access
the same memory location concurrently, and at least one of the accesses
updates the memory slot while other threads read the same value without using
any exclusive locks to control their accesses to that memory.

Consider the case of two threads (Thread 1 and Thread 2) running in parallel, both
trying to access and modify the shared value x as shown in figure 1.11. For Thread 1
to modify a variable requires more than one CPU instruction: the value must be read
from memory, then modified and ultimately written back to memory. If Thread 2 tries
to read from the same memory location while Thread 1 is writing back an updated
value, the value of x changed. More precisely, it’s possible that Thread 1 and Thread 2
read the value x simultaneously, then Thread 1 modifies the value x and writes it back
to memory, while Thread 2 also modifies the value x. The result is data corruption.
This phenomenon is called race condition.

Thread 1 x = 42

Mutable shared state x = 42 x = 43 x = 43

x = x + 1

Modify value

Thread 2 x = 42 x = x + 1

Modify value

Time

Read valueRead value

Write value Write value

Figure 1.11 Two threads (Thread 1 and Thread 2) run in parallel, both trying to access and modify the
shared value x. If Thread 2 tries to read from the same memory location while Thread 1 writes back an
updated value, the value of x changes. This result is data corruption or race condition.

2 An atomic operation accesses a shared memory and completes in a single step relative to other threads.

	Concurrency in .NET
	brief contents
	contents
	preface
	acknowledgments
	about this book
	about the author
	about the cover illustration
	Part 1: Benefits of functional programming applicable to concurrent programs
	1 Functional concurrency foundations
	1.1	What you?ll learn from this book
	1.2	Let?s start with terminology
	1.2.1	Sequential programming performs one task at a time
	1.2.2	Concurrent programming runs multiple tasks at the same time
	1.2.3	Parallel programming executes multiples tasks simultaneously
	1.2.4	Multitasking performs multiple tasks concurrently over time
	1.2.5	Multithreading for performance improvement
	1.3.1	Present and future of concurrent programming
	1.4.1	Concurrency hazards

	1.3	Why the need for concurrency?
	1.4	The pitfalls of concurrent programming

