
M A N N I N G

Mark Seemann
FOREWORD BY GLENN BLOCK

in .NET

GLOSSARY CONCEPTUAL MAP

This figure maps out how the important concepts and terms in this book relate to each other, and
provides a reference to the chapters where they are covered. There's also a Glossary in the back of
the book with one-sentence descriptions of each term.

Dependency Injection in .NET

Dependency
Injection in .NET

MARK SEEMANN

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Copyeditors: June Eding, Tiffany Taylor
PO Box 261 Proofreader: Katie Tennant
Shelter Island, NY 11964 Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781935182504
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12 11

www.manning.com

 To Cecilie
I couldn’t have done it without you

vii

brief contents
PART 1 PUTTING DEPENDENCY INJECTION ON THE MAP.............1

1 ■ A Dependency Injection tasting menu 3
2 ■ A comprehensive example 29
3 ■ DI Containers 58

PART 2 DI CATALOG ...93
4 ■ DI patterns 95
5 ■ DI anti-patterns 133
6 ■ DI refactorings 162

PART 3 DIY DI ...197
7 ■ Object Composition 199
8 ■ Object Lifetime 236
9 ■ Interception 275

PART 4 DI CONTAINERS..311
10 ■ Castle Windsor 313
11 ■ StructureMap 347
12 ■ Spring.NET 385
13 ■ Autofac 417
14 ■ Unity 448
15 ■ MEF 492

ix

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiv
about the cover illustration xxix

PART 1 PUTTING DEPENDENCY INJECTION ON THE MAP ...1

1 A Dependency Injection tasting menu 3
1.1 Writing maintainable code 5

Unlearning DI 5 ■ Understanding the purpose of DI 8

1.2 Hello DI 13
Hello DI code 13 ■ Benefits of DI 15

1.3 What to inject and what not to inject 22
Seams 22 ■ Stable Dependencies 23
Volatile Dependencies 23

1.4 DI scope 24
Object Composition 25 ■ Object Lifetime 26
Interception 26 ■ DI in three dimensions 27

1.5 Summary 28

CONTENTSx

2 A comprehensive example 29
2.1 Doing it wrong 30

Building a tightly coupled application 31
Smoke test 36 ■ Evaluation 37 ■ Analysis 39

2.2 Doing it right 41
Rebuilding the commerce application 43 ■ Analyzing the
loosely coupled implementation 51

2.3 Expanding the sample application 53
Architecture 53 ■ Basket feature 54

2.4 Summary 57

3 DI Containers 58
3.1 Introducing DI Containers 61

Hello container 62 ■ Auto-wiring 64

3.2 Configuring DI Containers 67
Configuring containers with XML 68 ■ Configuring containers
with code 70 ■ Configuring containers by convention 72

3.3 DI Container patterns 75
Composition Root 75 ■ Register Resolve Release 81

3.4 DI Container landscape 87
Selecting a DI Container 87 ■ Microsoft and DI 89

3.5 Summary 91

PART 2 DI CATALOG..93

4 DI patterns 95
4.1 Constructor Injection 98

How it works 98 ■ When to use it 99 ■ Known use 100
Example: Adding a currency provider to the shopping basket 101
Related patterns 103

4.2 Property Injection 104
How it works 104 ■ When to use it 105 ■ Known use 107
Example: Defining a currency profile service for the
BasketController 108 ■ Related patterns 110

4.3 Method Injection 111
How it works 111 ■ When to use it 112 ■ Known use 113
Example: Converting baskets 114 ■ Related patterns 117

CONTENTS xi

4.4 Ambient Context 118
How it works 118 ■ When to use it 120 ■ Known use 123
Example: Caching Currency 123 ■ Related patterns 130

4.5 Summary 131

5 DI anti-patterns 133
5.1 Control Freak 136

Example: newing up Dependencies 136 ■ Example: Factory 137
Analysis 143

5.2 Bastard Injection 144
Example: ProductService with Foreign Default 144
Analysis 146

5.3 Constrained Construction 149
Example: late-binding ProductRepository 149
Analysis 151

5.4 Service Locator 154
Example: ProductService using a Service Locator 156
Analysis 157

5.5 Summary 160

6 DI refactorings 162
6.1 Mapping runtime values to Abstractions 163

Abstractions with runtime Dependencies 164
Example: selecting a routing algorithm 166
Example: using a CurrencyProvider 168

6.2 Working with short-lived Dependencies 170
Closing connections through Abstractions 170
Example: invoking a product-management service 173

6.3 Resolving cyclic Dependencies 175
Addressing Dependency cycles 176
Example: composing a window 178

6.4 Dealing with Constructor Over-injection 182
Recognizing and addressing Constructor Over-injection 182
Example: refactoring order reception 185

6.5 Monitoring coupling 188
Unit-testing coupling 189 ■ Integration-testing coupling 191
Using NDepend to monitor coupling 193

6.6 Summary 195

CONTENTSxii

PART 3 DIY DI..197

7 Object Composition 199
7.1 Composing console applications 202

Example: updating currencies 202

7.2 Composing ASP.NET MVC applications 206
ASP.NET MVC extensibility 206 ■ Example: implementing
CommerceControllerFactory 208

7.3 Composing WCF applications 210
WCF extensibility 211 ■ Example: wiring up
a product-management service 212

7.4 Composing WPF applications 219
WPF Composition 219 ■ Example: wiring up
a product-management rich client 220

7.5 Composing ASP.NET applications 224
ASP.NET composition 224 ■ Example: wiring up
a CampaignPresenter 225

7.6 Composing PowerShell cmdlets 230
Example: composing basket-management cmdlets 231

7.7 Summary 235

8 Object Lifetime 236
8.1 Managing Dependency Lifetime 239

Introducing Lifetime Management 239
Managing lifetime with a container 242

8.2 Working with disposable Dependencies 247
Consuming disposable Dependencies 248
Managing disposable Dependencies 251

8.3 Lifestyle catalog 255
Singleton 255 ■ Transient 258 ■ Per Graph 259
Web Request Context 261 ■ Pooled 266 ■ Other lifestyles 271

8.4 Summary 273

9 Interception 275
9.1 Introducing Interception 277

Example: implementing auditing 277 ■ Patterns and principles
for Interception 281

CONTENTS xiii

9.2 Implementing Cross-Cutting Concerns 285
Intercepting with a Circuit Breaker 286
Handling exceptions 292 ■ Adding security 293

9.3 Declaring aspects 295
Using attributes to declare aspects 296
Applying dynamic Interception 300
Example: intercepting with Windsor 303

9.4 Summary 308

PART 4 DI CONTAINERS ..311

10 Castle Windsor 313
10.1 Introducing Castle Windsor 314

Resolving objects 315 ■ Configuring the container 317
Packaging configuration 322

10.2 Managing lifetime 323
Configuring lifestyle 324 ■ Using advanced lifestyles 325
Developing a custom lifestyle 327

10.3 Working with multiple components 333
Selecting among multiple candidates 333
Wiring sequences 336 ■ Wiring Decorators 339

10.4 Configuring difficult APIs 341
Configuring primitive Dependencies 341
Registering components with code blocks 343
Wiring with Property Injection 344

10.5 Summary 345

11 StructureMap 347
11.1 Introducing StructureMap 348

Resolving objects 350 ■ Configuring the container 352
Packaging configuration 358

11.2 Managing lifetime 361
Configuring lifestyles 362 ■ Developing a
custom lifestyle 364

11.3 Working with multiple components 370
Selecting among multiple candidates 371
Wiring sequences 374 ■ Wiring Decorators 377

CONTENTSxiv

11.4 Configuring difficult APIs 380
Configuring primitive Dependencies 380 ■ Creating objects
with code blocks 381 ■ Wiring with Property Injection 382

11.5 Summary 383

12 Spring.NET 385
12.1 Introducing Spring.NET 386

Resolving objects 387 ■ Configuring the container 389
Loading XML 393

12.2 Managing lifetime 397
Configuring object scopes 398

12.3 Working with multiple components 399
Selecting among multiple candidates 400
Wiring sequences 402 ■ Wiring Decorators 405
Creating Interceptors 407

12.4 Configuring difficult APIs 412
Configuring primitive Dependencies 412 ■ Configuring static
factories 413 ■ Wiring with Property Injection 414

12.5 Summary 416

13 Autofac 417
13.1 Introducing Autofac 418

Resolving objects 420 ■ Configuring the ContainerBuilder 422
Packaging configuration 427

13.2 Managing lifetime 429
Configuring instance scope 430

13.3 Working with multiple components 433
Selecting among multiple candidates 434
Wiring sequences 438 ■ Wiring Decorators 440

13.4 Registering difficult APIs 442
Configuring primitive Dependencies 443 ■ Registering objects
with code blocks 444 ■ Wiring with Property Injection 445

13.5 Summary 447

14 Unity 448
14.1 Introducing Unity 450

Resolving objects 451 ■ Configuring the container 453
Packaging configuration 458

CONTENTS xv

14.2 Managing lifetime 459
Configuring lifetime 460 ■ Developing a custom lifetime 464

14.3 Working with multiple components 473
Selecting among multiple candidates 473
Wiring sequences 476 ■ Wiring Decorators 479
Creating Interceptors 481

14.4 Configuring difficult APIs 486
Configuring primitive Dependencies 486
Registering components with code blocks 487
Wiring with Property Injection 489

14.5 Summary 490

15 MEF 492
15.1 Introducing MEF 495

Resolving objects 496 ■ Defining imports and exports 499
Working with catalogs 504

15.2 Managing lifetime 509
Declaring creation policy 509 ■ Releasing objects 511

15.3 Working with multiple components 513
Selecting among multiple candidates 513
Wiring sequences 516 ■ Wiring Decorators 519

15.4 Composing difficult APIs 521
Compositing primitive parts 521 ■ Composing parts
with non-public constructors 522 ■ Wiring with
Property Injection 523

15.5 Summary 524

resources 526
glossary 531
index 535

xvii

foreword
My first experience with Dependency Injection was almost 10 years ago. I was working at
an ISV (independent software vendor) as an architect on an enterprise framework build-
ing LOB (line-of-business) applications. In those days, it seemed like all my friends in the
industry were building similar frameworks. The framework supported various layers
across n-tier applications addressing data access, business, and UI concerns. The product-
supported business objects could be persisted across multiple databases and represented
in multiple UIs; the challenge was finding a way to build the system to make it extensible
and maintainable. We found our answer by wading into the waters of Dependency Injec-
tion. Using a DI approach, we clearly defined contracts for the layers, allowing us to more
easily test the layers as well as to swap their implementations without breaking the code.

 Mark talks quite a bit in this book about “poor man’s DI” and this is exactly what we
were doing. In those days, we didn’t have DI containers at our disposal. We also didn’t
have the type of guidance you’ll find in this book. As a result, we made a lot of mis-
takes—mistakes you won’t have to make.

 In the past four years, I’ve personally worked with hundreds of customers and I’m
aware of thousands that have found success using the techniques described in this book.

 It all starts with patterns.
DI containers are just tools. The tools are only useful if you’re building systems that

incorporate the patterns that the tools are addressing. They aren’t the solution to
every problem. Ideally, you need to first learn what Dependency Injection is, what
kinds of problems it solves, and what the patterns are for using it. Then you can look
at the various tools as aids in applying those patterns.

FOREWORDxviii

 This book will help you with all of the above. The early chapters present an over-
view of the general problems that occur when software is tightly coupled. The book
then discusses ways we can apply various techniques, both simple and advanced, to
address those problems. Along the way, the book classifies various patterns and identi-
fies when they are most appropriate for specific situations. In the second half, the book
presents a comprehensive overview of the most common DI containers/frameworks in
.NET and explains how to use them to apply different techniques.

 With this book, you will benefit from the knowledge of someone who has many
years of real-world experience in applying these techniques. This is a real treat; often,
those who start using DI quickly find themselves lost in a sea of confusion. This book
addresses any potential misunderstanding, starting with basic questions like, “Where
should I put my IoC?” or “Should I expose my container?” Mark covers these ques-
tions and many more.

 Throughout the book, Mark not only describes the techniques but really goes into
depth explaining when you should—and, more importantly—shouldn’t use them. When
he describes a problem, he uses realistic examples to keep the big picture in focus.

 If you are new to IoC, I believe you’ll find Dependency Injection in .NET to be a great
resource for learning. Even if you have extensive experience with IoC, you’ll still ben-
efit from the painstaking work Mark has done to classify various patterns and create a
taxonomy for IoC. I also think that you will find his comparisons with other IoC con-
tainers beneficial.

 Regardless of your level of experience, I wish you success with this book.

GLENN BLOCK

 SENIOR PROGRAM MANAGER

MICROSOFT

xix

preface
There’s a peculiar phenomenon related to Microsoft called the Microsoft Echo Chamber.
Microsoft is a huge organization and the surrounding ecosystem of Microsoft Certi-
fied Partners multiplies that size by orders of magnitude. If you’re sufficiently embed-
ded in this ecosystem, it can be hard to see past its boundaries. Whenever you look for
a solution to a problem with a Microsoft product or technology, you’re likely to find
an answer that involves throwing even more Microsoft products at it. No matter what
you yell within the echo chamber, the answer is Microsoft!

 When Microsoft hired me in 2003, I was already firmly embedded in the echo
chamber, having worked for Microsoft Certified Partners for years—and I loved it!
They soon shipped me off to an internal tech conference in New Orleans to learn
about the latest and greatest Microsoft technology.

 Today, I can’t recall any of the Microsoft product sessions I attended—but I do
remember the last day. On that day, having failed to experience any sessions that
could satisfy my hunger for cool tech, I was mostly looking forward to flying home to
Denmark. My top priority was to find a place to sit so I could attend to my email, so I
chose a session that seemed marginally relevant for me and fired up my laptop.

 The session was loosely structured and featured several presenters. One was a
bearded guy named Martin Fowler, who talked about Test-Driven Development (TDD)
and dynamic mocks. I had never heard of him and I didn’t listen very closely, but,
nonetheless, something must have stuck in my mind.

 Soon after returning to Denmark, I was tasked with rewriting a big ETL (extract,
transform, load) system from scratch, and I decided to give TDD a try (it turned out to

PREFACExx

be a very good decision). The use of dynamic mocks followed naturally, but also intro-
duced a need to manage dependencies. I found that to be a very difficult but very cap-
tivating problem, and I couldn’t stop thinking about it.

 What started as a side effect of my interest in TDD became a passion in itself. I did
a lot of research, read lots of blog posts about the matter, wrote quite a few blogs
myself, experimented with code, and discussed the topic with anyone who cared to lis-
ten. Increasingly, I had to look outside the Microsoft Echo Chamber for inspiration
and guidance. Along the way, people associated me with the ALT.NET movement even
though I was never very active in it.

 I made all the mistakes it was possible to make, but I was gradually able to develop
a coherent understanding of Dependency Injection (DI).

 When Manning approached me with the idea for a book about Dependency Injec-
tion in .NET my first reaction was, Is this even necessary? I felt that all the concepts you
need to understand DI were already described in numerous blog posts. Was there
anything to add? Honestly, I thought DI in .NET was a topic that had been done to
death already.

 Upon reflection, however, it dawned on me that while the knowledge is definitely
out there, it’s very scattered and uses a lot of conflicting terminology. Before this book,
there were no titles about DI that attempted to present a coherent description of it.
After thinking about it further, I realized that Manning was offering me a tremendous
challenge and a great opportunity to collect and systematize all that I knew about DI.

 The result is this book. It uses .NET and C# to introduce and describe a compre-
hensive terminology and guidance for DI, but I hope that the value of the book will
reach well beyond the platform. I think that the pattern language articulated here is
universal. Whether you are a .NET developer or use another object-oriented platform,
I hope that this book will help you be a better software engineer.

xxi

acknowledgments
Gratitude may seem like a cliché, but this is only because it’s such a fundamental part
of human nature. While I was writing the book, many people gave me good reasons to
be grateful, and I would like to thank them all.

 First of all, writing a book in my spare time has given me a new understanding of
just how taxing such a project is on marriage and family life. My wife Cecilie stayed
with me and actively supported me during the whole process. Most importantly, she
understood just how important this project was to me. We are still together and I look
forward to being able to spend more time with her and our kids Linea and Jarl (who
miss me, although I’ve been right here all the time).

 Both my parents and in-laws have also been a huge help in keeping the family run-
ning during those times when I needed to direct my efforts towards the book. I
couldn’t have done it without them.

 On a more professional level, I wish to thank Manning for giving me this oppor-
tunity. Karen Tegtmeyer originally “discovered” me and helped me establish a rela-
tionship with Manning. Michael Stephens initiated the project and believed in me
when things looked bleak. There were times when it looked like I’d never be able to
finish the book by myself, but Michael took a chance with me, and I’m immensely
grateful that I was allowed to complete the book as the consistent work of a single
person. Cynthia Kane served as my development editor and kept a keen eye on the
quality of the text. She helped me identify weak spots in the manuscript and provided
extensive constructive criticism. Despite all the frustration along the way, I’m particu-
larly grateful that she convinced me to rework chapters 1 through 3. Kill your darlings,

ACKNOWLEDGMENTSxxii

as the saying goes. I’m much happier with the final result, and I have Cynthia to
thank for that.

 Although writing the book was an unpaid side project, I never had any doubt that
it would impact my work performance. When I started the project, my manager at the
time, Peter Haastrup, was very supportive. I want to thank both him and our CEO,
Niels Flensted-Jensen, for providing an inspiring and supportive work environment.
Unfortunately, the company went out of business, but my new employer, Jørn Floor
Andersen, has been exceptionally patient with me.

 Karsten Strøbæk and Brian Rasmussen read through numerous early drafts and
provided much helpful feedback. Karsten also served as the technical proofreader
during production.

 The following reviewers read the manuscript at various stages of development and
I am grateful for their comments and insight: Christian Siegers, Amos Bannister,
Rama Krishna Vavilala, Doug Ferguson, Darren Neimke, Chuck Durfee, Paul
Grebenc, Lester Lobo, Jonas Bandi, Braj Panda, Alan Ruth, Timothy Binkley-Jones,
Andrew Siemer, Javier Lozano, David Barkol, and Patrick Steger.

 Many of the participants in the Manning Early Access Program (MEAP) also
provided feedback and asked difficult questions that exposed the weak parts of
the text.

 I was so fortunate that the existing .NET DI CONTAINER community received
the book project with a very positive attitude. Several of the specific DI CONTAIN-
ERS’ creators offered to review the chapters on “their” container. Krzysztof
Koźmic reviewed the Castle Windsor chapter, Stephen Bohlen the Spring.NET
chapter, Nicholas Blumhardt the Autofac chapter, Chris Tavares the Unity chap-
ter, and Glenn Block looked over the MEF chapter while Jeremy Miller answered
my stupid questions via Twitter and the StructureMap forum. I’m grateful for
their participation, for it provided confirmation that my way of presenting their
work could be aligned with their own. I would also like to thank Glenn Block for
contributing the foreword.

 Mogens Heller Grabe courteously allowed me to use his picture of a hairdryer
wired directly into a wall outlet, and Patrick Smacchia provided me with a copy of
NDepend and reviewed the related section.

 In many ways, Martin Gildenpfennig sowed more seeds for this book than he may
realize. Even before I was (lightly) exposed to Martin Fowler’s presentation of TDD
back in 2003, Martin Gildenpfennig had already introduced me to the concept of unit
testing, although we never got around using it at that time. Much later, I was stuck
with the false conviction that SERVICE LOCATOR was a blessing, and, with a few simple
sentences, he made me realize that there’s a better alternative.

 My former colleague, Mikkel Christensen, was a pleasure to work with while I
wrote great portions of the book. We had many good discussions about API design and
patterns, and I could bounce even my craziest ideas off of him and always get an open
and qualified discussion out of it.

ACKNOWLEDGMENTS xxiii

 Finally, I wish to thank Thomas Jaskula for all the support and inspiration along
the way. We’ve never had the pleasure of meeting each other, but Thomas has time
and again exhibited an almost overwhelming delight with my work. He may not real-
ize it, but there were times when this was the only thing that kept me going.

xxiv

about this book
This is a book about Dependency Injection first and foremost. It’s also a book about
.NET, but that’s much less important. C# is used for code examples, but much of the
discussion in this book can be easily applied to other languages and platforms. In fact,
I learned a lot of the underlying principles and patterns from reading books where
Java or C++ was used in examples.

 Dependency Injection (DI) is a set of related patterns and principles. It’s a way to
think about and design code more than it’s a specific technology. The ultimate purpose
of using DI is to create maintainable software within the object-oriented paradigm.

 The concepts used throughout this book all relate to object-oriented programming.
The problem that DI addresses (code maintainability) is universal, but the proposed solu-
tion is given within the scope of object-oriented programming in statically typed lan-
guages: C#, Java, Visual Basic .NET, C++, and so on. You can’t apply DI to procedural
programming, and it may not be the best solution in functional or dynamic languages.

DI in isolation is just a small thing, but it’s closely interconnected with a large com-
plex of principles and patterns for object-oriented software design. Whereas the book
focuses consistently on DI from start to finish, it also discusses many of these other top-
ics in the light of the specific perspective that DI can give. The goal of the book is
more than just teaching you about DI specifics: it’s to make you a better object-
oriented programmer.

ABOUT THIS BOOK xxv

Who should read this book?

It would be tempting to state that this is a book for all .NET developers. However, the
.NET community today is vast and spans developers working with web applications,
desktop applications, smartphones, RIA, integration, office automation, content man-
agement systems, and even games. Although .NET is object-oriented, not all of those
developers write object-oriented code.

 This is a book about object-oriented programming, so at minimum readers should
be interested in object orientation and understand what an interface is. A few years of
professional experience and knowledge of design patterns or SOLID will certainly be a
benefit as well. In fact, I don’t expect beginners to get much out of the book; it’s
mostly targeted towards experienced developers and software architects.

 The examples are all written in C#, so readers working with other .NET languages
must be able to read and understand C#. Readers familiar with non-.NET object-
oriented languages such as Java and C++ may also find the book valuable, because the
.NET platform-specific content is relatively light. Personally, I read a lot of pattern
books with examples in Java and still get a lot out of them, so I hope the converse is
true as well.

Roadmap

The contents of this book are divided into four parts. Ideally, I’d like you to first read
it from cover to cover and then subsequently use it as a reference, but I understand if
you have other priorities. For that reason, a majority of the chapters are written so that
you can dive right in and start reading from that point.

 The first part is the major exception. It contains a general introduction to DI and is
probably best read sequentially. The second part is a catalog of patterns and the like,
whereas the third part is an examination of DI from three different angles. The fourth
and largest part of the book is a big catalog of six DI CONTAINER libraries.

 There are a lot of interconnected concepts and because I introduce them the first
time it feels natural, this means that I often mention concepts before I’ve formally
introduced them. To distinguish these universal concepts from more local terms, I
consistently use SMALL CAPS to make them stand out. All these terms are briefly defined
in the glossary, which also contains references to a more extensive description.

■ Part 1 is a general introduction to DI. If you don’t know what DI is, this is the place
to start; but even if you do, you may want to familiarize yourself with the contents
of part 1, as it establishes a lot of the context and terminology used in the rest of
the book. Chapter 1 discusses the purpose and benefits of DI and provides a gen-
eral outline. Chapter 2 contains a big and rather comprehensive example, and
chapter 3 explains how DI CONTAINER libraries fit into the overall picture. Com-
pared to the other parts, part 1 has a much more linear progression of its content.
You’ll need to read each chapter from the beginning to gain the most from it.

■ Part 2 is a catalog of patterns, anti-patterns, and refactorings. This is where
you’ll find prescriptive guidance on how to implement DI, and the dangers to

ABOUT THIS BOOKxxvi

look out for. Chapter 4 is a catalog of DI design patterns, and, conversely, chap-
ter 5 is a catalog of anti-patterns. Chapter 6 contains generalized solutions to
commonly occurring issues. As a catalog, each chapter contains a set of loosely
related sections that are designed to be read in isolation as well as in sequence.

■ Part 3 examines DI from three different angles: OBJECT COMPOSITION, LIFETIME

MANAGEMENT, and INTERCEPTION. In chapter 7, I discuss how to implement DI on
top of existing application frameworks such as WCF, ASP.NET MVC, WPF, and
others. In many ways, you can use chapter 7 as a catalog of how to implement DI
on a set of frameworks. Chapter 8 describes how to manage dependency life-
times to avoid resources leaks. Whereas the structure is a little less stringent
than previous chapters, a large part of the chapter can be used as a catalog of
well-known lifetime styles. Chapter 9 finally describes how to compose applica-
tions with CROSS-CUTTING CONCERNS. This is where we harvest the benefits of all
the work that came before, so, in many ways, I consider this to be the climax of
the book.

■ Part 4 is a catalog of DI CONTAINER libraries. Six chapters each cover a specific
container in a fair amount of detail: Castle Windsor, StructureMap, Spring.NET,
Autofac, Unity, and MEF. Each chapter covers its container in a rather con-
densed form to save space, so you may want to read about only the two or three
containers that interest you the most. In many ways, I regard part 4 as a very big
set of appendixes.

To keep the discussion of the DI principles and patterns free of any specific container
APIs, most of the book, with the exception of part 4, is written without referencing a
particular container. This is also why the containers appear with such force in part 4.
It’s my hope that by keeping the discussion general, the book will be useful for a lon-
ger period of time.

 You can also take the concepts from parts 1 through 3 and apply them to container
libraries not covered in part 4. There are good containers available that, unfortu-
nately, I couldn’t cover, but even for users of these libraries, I hope that this book has
a lot to offer.

Code conventions and downloads

There are many code examples in this book. Most of it is C#, but there’s also a bit of
XML here and there. Source code in listings and text is in a fixed-width font to sepa-
rate it from ordinary text.

 All the source code for the book is written in C# and Visual Studio 2010. The
ASP.NET MVC applications are written against ASP.NET MVC 3.

 Only a few of the techniques described in this book hinge on modern language
features. I started writing loosely coupled code in .NET 1.1 and I could have written
most of the book’s code examples on that platform without having to change my
conclusions. As it were, I wanted to strike a reasonable balance between conservative
and modern coding styles. When I write code professionally I use the modern

ABOUT THIS BOOK xxvii

language features to a much greater degree, but here the most advanced features are
generics and LINQ. The last thing I want is for you to get the idea that DI can only be
applied with ultra-modern languages.

 Writing code examples for a book presents its own set of challenges. Compared to
a modern computer monitor, a book only allows for very short lines of code. It was
very tempting to write code in a terse style with short but cryptic names for methods
and variables. Such code is already difficult to understand as real code when you still
have an IDE and a debugger nearby, but it becomes really difficult to follow in a book.
I found it very important to keep names as readable as possible. To make it all fit, I’ve
often had to resort to some unorthodox line breaks. All the code compiles, but some-
times the formatting looks a bit funny.

 The code also makes extensive use of the var keyword. In my professional code I
use this almost exclusively, but for written text I often find it helpful when paired with
explicit declarations because the IDE isn’t around to help. Still, to save space, I use var
wherever I judge that an explicit declaration is unnecessary.

 The word class is often used as a synonym for a type. In .NET, classes, structs, inter-
faces, enums, and so on are all types, but because the word type is also a word with a lot
of overloaded meaning in ordinary language, it would often make the text less clear
if used.

 Most of the code in this book relates to an overarching example running through
the book: an online store complete with supporting internal management applica-
tions. This is about the least exciting example you can expect to see in any software
text, but I chose it for a few reasons:

■ It’s a well-known problem domain for most readers. Although it may seem bor-
ing, I think this is an advantage because it doesn’t steal focus from DI.

■

I also have to admit that I couldn’t really think of any other domain that was
rich enough to support all the different scenarios I had in mind.

I wrote a lot of code to support the code examples, and most of that code is not even
in the book. In fact, I wrote almost all of it using Test-Driven Development (TDD), but
as this isn’t a TDD book, I generally don’t show the unit tests in the book.

 The source code for all examples in this book is available from Manning’s website:
http://manning.com/DependencyInjectionin.NET. The ReadMe.txt in the root of the
download contains instructions for compiling and running the code.

Author Online

The purchase of Dependency Injection in .NET includes free access to a private web forum
run by Manning Publications, where you can make comments about the book, ask tech-
nical questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to http://manning.com/Dependency-
Injectionin.NET.This page provides information on how to get on the forum once
you’re registered, what kind of help is available, and the rules of conduct on the forum.

http://manning.com/DependencyInjectionin.NET
http://manning.com/DependencyInjectionin.NET
http://manning.com/DependencyInjectionin.NET

ABOUT THIS BOOKxxviii

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It isn’t a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray! The
Author Online forum and the archives of previous discussions will be accessible from
the publisher’s website as long as the book is in print.

About the author

Mark Seemann is a programmer, software architect, and speaker living in Copenha-
gen, Denmark. He has been working with software since 1995 and TDD since 2003,
including six years with Microsoft as a consultant, developer, and architect. Mark is
currently professionally engaged with software development, and is working out of
Copenhagen. He enjoys reading, painting, playing the guitar, good wine, and gour-
met food.

xxix

about the cover illustration
On the cover of Dependency Injection in .NET is “A woman from Vodnjan,” a small
town in the interior of the peninsula of Istria in the Adriatic Sea, off Croatia. The
illustration is taken from a reproduction of an album of Croatian traditional cos-
tumes from the mid-nineteenth century by Nikola Arsenovic, published by the
Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained
from a helpful librarian at the Ethnographic Museum in Split, itself situated in the
Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s
retirement palace from around AD 304. The book includes finely colored illustra-
tions of figures from different regions of Croatia, accompanied by descriptions of
the costumes and of everyday life.

 Vodnjan is a culturally and historically significant town, situated on a hilltop with
a beautiful view of the Adriatic and known for its many churches and treasures of
sacral art. The woman on the cover wears a long black linen skirt and a short black
jacket over a white linen shirt. The jacket is trimmed with blue embroidery and a
blue linen apron completes the costume. The woman is also wearing a large-
brimmed black hat, a flowered scarf, and big hoop earrings. Her elegant costume
indicates that she is an inhabitant of the town, rather than a village. Folk costumes
in the surrounding countryside are more colorful, made of wool, and decorated with
rich embroidery.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few

ABOUT THE COVER ILLUSTRATIONxxx

miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

Part 1

Putting Dependency
Injection on the map

Dependency Injection (DI) is one of the most misunderstood concepts of
object-oriented programming. The confusion is abundant and spans terminol-
ogy, purpose, and mechanics. Should it be called Dependency Injection, Inversion
of Control, or even Third-Party Connect? Is the purpose of DI only to support unit
testing or is there a broader purpose? Is DI the same as Service Location? Is a
DI CONTAINER required?

 There are plenty of blog posts, magazine articles, conference presentations,
and so on that discuss DI, but, unfortunately, many of them use conflicting ter-
minology or give bad advice. This is true across the board, and even big and
influential actors like Microsoft add to the confusion.

 It doesn’t have to be this way. In this book I present and use a consistent ter-
minology that I hope others will adopt. For the most part, I’ve adopted and clar-
ified existing terminology defined by others, but occasionally I add a bit of
terminology where none existed previously. This has helped me tremendously in
evolving a specification of the scope or boundaries of DI.

 One of the underlying reasons behind all the inconsistency and bad advice is
that the boundaries of DI are quite blurry. Where does DI end and other object-
oriented concepts begin? I think that it’s impossible to draw a distinct line between
DI and other aspects of writing good object-oriented code. To talk about DI we have
to draw in other concepts such as SOLID and Clean Code. I don’t feel that I can
credibly write about DI without also touching on some of these other topics.

2 PART 1 Putting Dependency Injection on the map

 The first part of the book helps you understand the place of DI in relation to other
facets of software engineering—putting it on the map, so to speak.

 The first chapter gives you a quick tour of DI, covering its purpose, principles, and
benefits, as well as providing an outline of the scope for the rest of the book. If you
want to learn what DI is, and why you should be interested in it, this is the place to
start. The chapter assumes you have no prior knowledge of DI, but even if you already
know about it you may still want to read it—it may turn out to be something other
than what you expected.

 Chapter 1 is focused on the big picture and doesn’t go into a lot of details. Chapter 2,
on the other hand, is completely reserved for a big example. This example is intended
to give you a much more concrete feel for DI. It’s divided into two parts and almost
shaped like a narrative. To contrast DI with a more “traditional” style of programming,
the chapter first showcases a typical, tightly coupled implementation of a sample
application, and then subsequently re-implements it with DI.

 The third and final chapter of part 1 introduces the concept of a DI CONTAINER and
explains how it fits into the overall picture of DI. I discuss DI in general terms and,
although I provide code examples that demonstrate how a typical DI CONTAINER works,
the purpose of the chapter isn’t to explain specific API details. The main point of
chapter 3 is to show that a DI CONTAINER is a (very helpful) optional tool. It’s entirely
possible to utilize DI without using a DI CONTAINER, so parts 2 and 3 more or less ignore
DI CONTAINERS and instead discuss DI in a container-agnostic way. Then, in part 4, we
return to DI CONTAINERS to dissect six specific containers.

 Part 1 establishes the context for the rest of the book. It’s aimed at readers who
don’t have any prior knowledge of DI, but experienced DI practitioners may also ben-
efit from skimming the chapters to get a feeling for the terminology used throughout
the book. By the end of part 1, you should have a firm grasp of the vocabulary and
overall concepts, even if some of the concrete details are still a little fuzzy. That’s
okay—the book becomes more concrete as you read on, so parts 2, 3, and 4 should
answer the questions you’re likely to have after reading part 1.

3

A Dependency
Injection tasting menu

You may have heard that making a sauce béarnaise is difficult. Even many people who
cook regularly have never attempted to make one. This is a shame, because the
sauce is delicious (it’s traditionally paired with steak, but it’s also an excellent
accompaniment with white asparagus, poached eggs, and other dishes). Some
resort to substitutes like ready-made sauces or instant mixes, but these aren’t nearly
as satisfying as the real thing.

DEFINITION A sauce béarnaise is an emulsified sauce made from egg yolk
and butter that’s flavored with tarragon, chervil, shallots, and vinegar. It
contains no water.

The biggest challenge to making a sauce béarnaise is that preparation can fail—the
sauce may curdle or separate, and if that happens, you can’t resurrect it. It takes
about 45 minutes to prepare, so a failed attempt means that you’ll have no time for
a second try.

Menu
■ Misconceptions about Dependency Injection
■ Purpose of Dependency Injection
■ Benefits of Dependency Injection
■ When to apply Dependency Injection

4 CHAPTER 1 A Dependency Injection tasting menu

 On the other hand, any chef can prepare a sauce béarnaise. It’s part of their train-
ing and, as they will tell you, it’s not difficult. You don’t have to be a professional cook
to make it. Anyone learning to make it will fail at least once, but once you get the hang
of it, you’ll succeed every time.

 I think Dependency Injection (DI) is like sauce béarnaise. It’s assumed to be difficult
and so few employ it. If you try to use it and fail, it’s likely there won’t be time for a sec-
ond attempt.

DEFINITION Dependency Injection is a set of software design principles and pat-
terns that enable us to develop loosely coupled code.

Despite the Fear, Uncertainty, and Doubt (FUD) surrounding DI, it’s as easy to learn as
making a sauce béarnaise. You may make mistakes while you learn, but once you’ve
mastered the technique, you’ll never again fail to apply it successfully.

 The software development Q&A website Stack Overflow
features an answer to the question How to explain Dependency
Injection to a 5-year old. The most highly rated answer, pro-
vided by John Munsch,1 provides a surprisingly accurate
analogy targeted at the (imaginary) five-year-old inquisitor:

When you go and get things out of the refrigerator for yourself,
you can cause problems. You might leave the door open, you
might get something Mommy or Daddy doesn’t want you to
have. You might even be looking for something we don’t even
have or which has expired.

What you should be doing is stating a need, “I need something
to drink with lunch,” and then we will make sure you have
something when you sit down to eat.

What this means in terms of object-oriented software devel-
opment is this: collaborating classes (the five-year-olds)
should rely on the infrastructure (the parents) to provide
the necessary services.

 As figure 1.1 shows, this chapter is fairly linear in struc-
ture. First, I introduce DI, including its purpose and bene-
fits. Although I include examples, overall, this chapter has
less code than any other chapter in the book.

 Before I introduce DI, I’ll discuss the basic purpose of
DI: maintainability. This is important because it’s easy to
misunderstand DI if you aren’t properly prepared. Next,
after an example (Hello DI), I’ll discuss benefits and scope,

1 John Munsch et al., “How to explain Dependency Injection to a 5-year old,” 2009, http://stackoverflow.com/
questions/ 1638919/how-to-explain-dependency-injection-to-a-5-year-old

Figure 1.1 The structure
of the chapter is fairly
linear. You should read the
first section before the
next, and so on. This may
seem obvious, but some of
the later chapters in the
book are less linear
in nature.

http://stackoverflow.com/qu estions/ 1638919/how-to-explain-dependency-injection-to-a-5-year-old
http://stackoverflow.com/qu estions/ 1638919/how-to-explain-dependency-injection-to-a-5-year-old

5Writing maintainable code

essentially laying out a road map for the book. When you’re done with this chapter,
you should be prepared for the more advanced concepts in the rest of the book.

 To most developers, DI may seem like a rather backward way of creating source
code, and, like sauce béarnaise, there’s much FUD involved. To learn about DI, you
must first understand its purpose.

1.1 Writing maintainable code
What purpose does DI serve? DI isn’t a goal in itself; rather, it’s a means to an end. Ulti-
mately, the purpose of most programming techniques is to deliver working software as
efficiently as possible. One aspect of that is to write maintainable code.

 Unless you write prototypes or applications that never make it past release 1, you’ll
soon find yourself maintaining and extending existing code bases. To be able to work
effectively with such a code base, it must be as maintainable as possible.

 One of many ways to make code maintainable is through loose coupling. As far
back as 1995, when the Gang of Four wrote Design Patterns,2 this was already com-
mon knowledge:

Program to an interface, not an implementation.

This important piece of advice isn’t the conclusion, but, rather, the premise, of Design
Patterns; to wit: it appears on page 18. Loose coupling makes code extensible, and
extensibility makes it maintainable.

DI is nothing more than a technique that enables loose coupling. However, there
are many misconceptions about DI, and sometimes they get in the way of proper
understanding. Before you can learn, you must unlearn what (you think) you
already know.

1.1.1 Unlearning DI

Like a Hollywood martial arts cliché, you must unlearn before you can learn. There
are many misconceptions about DI, and if you carry those around, you’ll misinterpret
what you read in this book. You must clear your mind to understand DI.

 There are at least four common myths about DI:

■ DI is only relevant for late binding.
■ DI is only relevant for unit testing.
■ DI is a sort of Abstract Factory on steroids.
■ DI requires a DI CONTAINER.

Although none of these myths are true, they’re prevalent nonetheless. We need to dis-
pel them before we can start to learn about DI.

2 Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software (New York, Addison-Wesley,
1994), 18.

6 CHAPTER 1 A Dependency Injection tasting menu

LATE BINDING

In this context, late binding refers to the ability to replace parts of an application with-
out recompiling the code. An application that enables third-party add-ins (such as
Visual Studio) is one example.

 Another example is standard software that supports different runtime environ-
ments. You may have an application that can run on more than one database engine:
for example, one that supports both Oracle and SQL Server. To support this feature,
the rest of the application can talk to the database through an interface. The code
base can provide different implementations of this interface to provide access to Ora-
cle and SQL Server, respectively. A configuration option can be used to control which
implementation should be used for a given installation.

 It’s a common misconception that DI is only relevant for this sort of scenario.
That’s understandable, because DI does enable this scenario, but the fallacy is to think
that the relationship is symmetric. Just because DI enables late binding doesn’t mean
it’s only relevant in late binding scenarios. As figure 1.2 illustrates, late binding is only
one of the many aspects of DI.

 If you thought DI was only relevant for late binding scenarios, this is something you
need to unlearn. DI does much more than enable late binding.

UNIT TESTING

Some people think that DI is only relevant to support unit testing. This isn’t true,
either—although DI is certainly an important part of supporting unit testing.

 To tell you the truth, my original introduction to DI came from struggling with
certain aspects of Test-Driven Development (TDD). During that time I discovered DI
and learned that other people had used it to support some of the same scenarios I
was addressing.

 Even if you don’t write unit tests (if you don’t, you should start now), DI is still rele-
vant because of all the other benefits it offers. Claiming that DI is only relevant to sup-
port unit testing is like claiming that it’s only relevant for supporting late binding.
Figure 1.3 shows that although this is a different view, it’s a view as narrow as figure 1.2.
In this book, I’ll do my best to show you the whole picture.

 If you thought DI was only relevant for unit testing, unlearn this assumption. DI
does much more than enable unit testing.

Figure 1.2 Late binding is enabled by DI, but to assume it’s only applicable in late binding scenarios is to adopt
a narrow view of a much broader vista.

7Writing maintainable code

AN ABSTRACT FACTORY ON STEROIDS

Perhaps the most dangerous fallacy is that DI involves some sort of general-purpose
Abstract Factory3 that we can use to create instances of the DEPENDENCIES that we need.

 In the introduction to this chapter, I wrote that “collaborating classes…should rely
on the infrastructure…to provide the necessary services.”

 What were your initial thoughts about this sentence? Did you think about the infra-
structure as some sort of service you could query to get the DEPENDENCIES you need? If
so, you aren’t alone. Many developers and architects think about DI as a service that
can be used to locate other services; this is called a SERVICE LOCATOR, but it’s the exact
opposite of DI.

 If you thought of DI as a SERVICE LOCATOR—that is, a general-purpose Factory—this
is something you need to unlearn. DI is the opposite of a SERVICE LOCATOR; it’s a way to
structure code so that we never have to imperatively ask for DEPENDENCIES. Rather, we
force consumers to supply them.

DI CONTAINERS

Closely associated with the previous misconception is the notion that DI requires a DI
CONTAINER. If you held the previous, mistaken belief that DI involves a SERVICE LOCATOR,
then it’s easy to conclude that a DI CONTAINER can take on the responsibility of the SER-
VICE LOCATOR. This might be the case, but it’s not at all how we should use a DI CONTAINER.

 A DI CONTAINER is an optional library that can make it easier for us to compose
components when we wire up an application, but it’s in no way required. When we
compose applications without a DI CONTAINER we call it POOR MAN’S DI; it takes a little
more work, but other than that we don’t have to compromise on any DI principles.

 If you thought that DI requires a DI CONTAINER, this is another notion you need to
unlearn. DI is a set of principles and patterns, and a DI CONTAINER is a useful, but
optional tool.

 You may think that, although I’ve exposed four myths about DI, I have yet to make
a compelling case against any of them. That’s true. In a sense, this whole book is one
big argument against these common misconceptions.

 In my experience, unlearning is vital because people tend to try to retrofit what I
tell them about DI and align it with what they think they already know. When this hap-
pens, it takes a lot of time before it finally dawns on them that some of their most basic

3 Ibid., 87.

Figure 1.3 Although the assumption that unit testing is the sole purpose of DI is a different view than late binding,
it’s also a narrow view of a much broader vista.

8 CHAPTER 1 A Dependency Injection tasting menu

premises are wrong. I want to spare you that experience. So, if you can, try to read this
book as though you know nothing about DI.

 Let’s assume that you don’t know anything about DI or its purpose and begin by
reviewing what DI does.

1.1.2 Understanding the purpose of DI
DI isn’t an end-goal—it’s a means to an end. DI enables loose coupling, and loose cou-
pling makes code more maintainable. That’s quite a claim, and although I could refer
you to well-established authorities like the Gang of Four for details, I find it only fair
to explain why this is true.

 Software development is still a rather new profession, so in many ways we’re still
figuring out how to implement good architecture. However, individuals with expertise
in more traditional professions (such as construction) figured it out a long time ago.

CHECKING INTO A CHEAP HOTEL

If you’re staying at a cheap hotel, you might encounter a sight like the one in
figure 1.4. Here, the hotel has kindly provided a hair dryer for your convenience, but
apparently they don’t trust you to leave the hair dryer for the next guest: the appli-
ance is directly attached into the wall outlet. Although the cord’s long enough to give
you a certain degree of movement, you can’t take the dryer with you. Apparently, the
hotel management has decided that the cost of replacing stolen hair dryers is high
enough to justify what’s otherwise an obviously inferior implementation.

 What happens when the hair dryer stops working? The hotel has to call in a skilled
professional who can deal with the issue. To fix the hardwired hair dryer, they will
have to cut the power to the room, rendering it temporarily useless. Then, the techni-
cian will use special tools to painstakingly disconnect the hair dryer and replace it with
a new one. If you’re lucky, the technician will remember to turn the power to the
room back on and go back to test whether the new hair dryer works…if you’re lucky.

Figure 1.4 In a cheap hotel
room, you might find the hair
dryer wired directly into the
wall outlet. This is equivalent
to using the common practice
of writing tightly coupled code.

9Writing maintainable code

Does this procedure sound at all familiar?
 This is how you would approach working with tightly coupled code. In this scenario,

the hair dryer is tightly coupled to the wall and you can’t easily modify one without
impacting the other.

COMPARING ELECTRICAL WIRING TO DESIGN PATTERNS

Usually, we don’t wire electrical appliances together by attaching the cable directly to
the wall. Instead, as in figure 1.5, we use plugs and sockets. A socket defines a shape
that the plug must match. In an analogy to software design, the socket is an interface.

 In contrast to the hardwired hair dryer, plugs and sockets define a loosely coupled
model for connecting electrical appliances. As long as the plug fits into the socket, we
can combine appliances in a variety of ways. What’s particularly interesting is that
many of these common combinations can be compared to well-known software design
principles and patterns.

 First, we’re no longer constrained to hair dryers. If you’re an average reader, I
would guess that you need power for a computer much more than you do for a hair
dryer. That’s not a problem: we unplug the hair dryer and plug a computer into the
same socket, as shown in figure 1.6.

 It’s amazing that the concept of a socket predates computers by decades, and yet it
provides an essential service to computers, too. The original designers of sockets
couldn’t possibly have foreseen personal computers, but because the design is so ver-
satile, needs that were originally unanticipated can be met. The ability to replace one
end without changing the other is similar to a central software design principle called
the LISKOV SUBSTITUTION PRINCIPLE. This principle states that we should be able to

Figure 1.5 Through the use of sockets and plugs, a hair dryer can be loosely coupled to
the wall outlet.

10 CHAPTER 1 A Dependency Injection tasting menu

replace one implementation of an interface with another without breaking either cli-
ent or implementation.

 When it comes to DI, the LISKOV SUBSTITUTION PRINCIPLE is one of the most impor-
tant software design principles. It’s this principle that enables us to address require-
ments that occur in the future, even if we can’t foresee them today.

 As figure 1.7 illustrates, we can unplug the computer if we don’t need to use it at
the moment. Even though nothing is plugged in, the wall doesn’t explode.

 If we unplug the computer from the wall, neither the wall outlet nor the computer
breaks down (in fact, if it’s a laptop computer, it can even run on its batteries for a
period of time). With software, however, a client often expects a service to be available.
If the service was removed, we get a NullReferenceException. To deal with this type of
situation, we can create an implementation of an interface that does “nothing.” This is
a design pattern known as Null Object,4 and it corresponds roughly to unplugging the

4 Robert C. Martin et al., Pattern Languages of Program Design 3 (New York, Addison-Wesley, 1998), 5.

Figure 1.6 Using sockets and plugs, we can replace the original hair dryer from figure 1.5 with
a computer. This corresponds to the LISKOV SUBSTITUTION PRINCIPLE.

Figure 1.7 Unplugging the computer causes neither wall nor computer to explode. This can
be roughly likened to the Null Object pattern.

11Writing maintainable code

computer from the wall. Because we’re using loose coupling, we can replace a real
implementation with something that does nothing without causing trouble.

 There are many other things we can do. If we live in a neighborhood with intermit-
tent power failures, we may wish to keep the computer running by plugging in into an
Uninterrupted Power Supply (UPS), as shown in figure 1.8: we connect the UPS to the
wall outlet and the computer to the UPS.

 The computer and the UPS serve separate purposes. Each has a SINGLE RESPONSIBIL-
ITY that doesn’t infringe on the other appliance. The UPS and computer are likely to
be produced by two different manufacturers, bought at different times, and plugged
in at different times. As figure 1.6 demonstrates, we can run the computer without a
UPS, but we could also conceivably use the hair dryer during blackouts by plugging it
into the UPS.

 In software design, this way of INTERCEPTING one implementation with another
implementation of the same interface is known as the Decorator 5 design pattern. It
gives us the ability to incrementally introduce new features and CROSS-CUTTING CON-
CERNS without having to rewrite or change a lot of our existing code.

 Another way to add new functionality to an existing code base is to compose an
existing implementation of an interface with a new implementation. When we aggre-
gate several implementations into one, we use the Composite 6 design pattern. Figure 1.9
illustrates how this corresponds to plugging diverse appliances into a power strip.

 The power strip has a single plug that we can insert into a single socket, while the
power strip itself provides several sockets for a variety of appliances. This enables us to
add and remove the hair dryer while the computer is running. In the same way, the
Composite pattern makes it easy to add or remove functionality by modifying the set
of composed interface implementations.

5 Gamma, Design Patterns, 175.
6 Ibid., 163.

Figure 1.8 An Uninterrupted Power Supply can be introduced to keep the computer running
in case of power failures. This corresponds to the Decorator design pattern.

12 CHAPTER 1 A Dependency Injection tasting menu

Here’s a final example. We sometimes find ourselves in situations where a plug
doesn’t fit into a particular socket. If you’ve traveled to another country, you’ve likely
noticed that sockets differ across the world. If you bring something, like the camera in
figure 1.10, along when traveling, you need an adapter to charge it. Appropriately,
there’s a design pattern with the same name.

 The Adapter7 design pattern works like its physical namesake. It can be used to
match two related, yet separate, interfaces to each other. This is particularly useful

7 Ibid., 139.

Figure 1.9 A power strip makes it possible to plug several appliances into a single wall
outlet. This corresponds to the Composite design pattern.

Figure 1.10 When traveling, we often need to use an adapter to plug an appliance into a
foreign socket (for example, to recharge a camera). This corresponds to the Adapter design
pattern.

13Hello DI

when you have an existing third-party API that you wish to expose as an instance of an
interface your application consumes.

 What’s amazing about the socket and plug model is that, over decades, it’s proven
to be an easy and versatile model. Once the infrastructure is in place, it can be used by
anyone and adapted to changing needs and unpredicted requirements. What’s even
more interesting is that, when we relate this model to software development, all the
building blocks are already in place in the form of design principles and patterns.

 Loose coupling can make a code base much more maintainable.
 That’s the easy part. Programming to an interface instead of an implementation is

easy. The question is, where do the instances come from? In a sense, this is what this
entire book is about.

 You can’t create a new instance of an interface the same way that you create a new
instance of a concrete type. Code like this doesn’t compile:

An interface has no constructor, so this isn’t possible. The writer instance must be
created using a different mechanism. DI solves this problem.

 With this outline of the purpose of DI, I think you’re ready for an example.

1.2 Hello DI
In the tradition of innumerable programming textbooks, let’s take a look at a simple
console application that writes “Hello DI!” to the screen. In this section, I’ll show you
what the code looks like and briefly outline some key benefits without going into
details—in the rest of the book, I’ll get more specific.

1.2.1 Hello DI code

You’re probably used to seeing Hello World examples that are written in a single line
of code. Here, we’ll take something that’s extremely simple and make it more compli-
cated. Why? We’ll get to that shortly, but let’s first see what Hello World would look
like with DI.

COLLABORATORS

To get a sense of the structure of the program, we’ll start by looking at the Main
method of the console application, and then I’ll show you the collaborating classes:

private static void Main()
{
 IMessageWriter writer = new ConsoleMessageWriter();
 var salutation = new Salutation(writer);
 salutation.Exclaim();
}

14 CHAPTER 1 A Dependency Injection tasting menu

The program needs to write to the console, so it creates a new instance of Console-
MessageWriter that encapsulates exactly that functionality. It passes that message
writer to the Salutation class so that the salutation instance knows where to write
its messages. Because everything is now wired up properly, you can execute the logic,
which results in the message being written to the screen.

 Figure 1.11 shows the relationship between the collaborators.
 The main logic of the application is encapsulated in the Salutation class, shown

in the following listing.

public class Salutation
{
 private readonly IMessageWriter writer;

 public Salutation(IMessageWriter writer)
 {
 if (writer == null)
 {
 throw new ArgumentNullException("writer");
 }

 this.writer = writer;
 }

 public void Exclaim()
 {
 this.writer.Write("Hello DI!");
 }
}

The Salutation class depends on a custom interface called IMessageWriter, and it
requests an instance of it through its constructor B. This is called CONSTRUCTOR INJEC-
TION and is described in detail in chapter 4, which also contains a more detailed walk-
through of a similar code example.

 The IMessageWriter instance is later used in the implementation of the Exclaim
method c, which writes the proper message to the DEPENDENCY.

Listing 1.1 Salutation class

Figure 1.11 The Main method creates new instances of both the ConsoleMessageWriter and
Salutation classes. ConsoleMessageWriter implements the IMessageWriter interface, which
Salutation uses. In effect, Salutation uses ConsoleMessageWriter, although this indirect usage
isn’t shown.

Inject
Dependency

B

Use
Dependency

c

15Hello DI

IMessageWriter is a simple interface defined for the occasion:

public interface IMessageWriter
{
 void Write(string message);
}

It could have had other members, but in this simple example you only need the Write
method. It’s implemented by the ConsoleMessageWriter class that the Main method
passes to the Salutation class:

public class ConsoleMessageWriter : IMessageWriter
{
 public void Write(string message)
 {
 Console.WriteLine(message);
 }
}

The ConsoleMessageWriter class implements IMessageWriter by wrapping the Base
Class Library’s Console class. This is a simple application of the Adapter design pat-
tern that we talked about in section 1.1.2.

 You may be wondering about the benefit of replacing a single line of code with two
classes and an interface with a total line count of 11, and rightly so. There are several
benefits to be harvested from doing this.

1.2.2 Benefits of DI

How is the previous example better than the usual single line of code we normally use
to implement Hello World in C#? In this example, DI adds an overhead of 1,100%,
but, as complexity increases from one line of code to tens of thousands, this overhead
diminishes and all but disappears. Chapter 2 provides a more complex example of
applied DI, and although that example is still overly simplistic compared to real-life
applications, you should notice that DI is far less intrusive.

 I don’t blame you if you find the previous DI example to be over-engineered, but
consider this: by its nature, the classic Hello World example is a simple problem with
well-specified and constrained requirements. In the real world, software development
is never like this. Requirements change and are often fuzzy. The features you must
implement also tend to be much more complex. DI helps address such issues by
enabling loose coupling. Specifically, we gain the benefits listed in table 1.1.

 In table 1.1, I listed the late binding benefit first because, in my experience, this is
the one that’s foremost in most people’s minds. When architects and developers fail
to understand the benefits of loose coupling, this is most likely because they never
consider the other benefits.

LATE BINDING

When I explain the benefits of programming to interfaces and DI, the ability to swap out
one service with another is the most prevalent benefit for most people, so they tend to
weigh the advantages against the disadvantages with only this benefit in mind.

16 CHAPTER 1 A Dependency Injection tasting menu

Remember when I asked you to unlearn before you can learn? You may say that you
know your requirements so well that you know you’ll never have to replace, say, your
SQL Server database with anything else. However, requirements change.

In section 1.2.1, you didn’t use late binding because you explicitly created a new
instance of IMessageWriter by hard-coding creation of a new ConsoleMessageWriter

Table 1.1 Benefits gained from loose coupling. Each benefit is always available but will be valued
differently depending on circumstances.

Benefit Description When is it valuable?

Late binding Services can be swapped with
other services.

Valuable in standard software, but perhaps
less so in enterprise applications where the
runtime environment tends to be well-defined

Extensibility Code can be extended and reused
in ways not explicitly planned for.

Always valuable

Parallel
development

Code can be developed in parallel. Valuable in large, complex applications; not so
much in small, simple applications

Maintainability Classes with clearly defined
responsibilities are easier to main-
tain.

Always valuable

TESTABILITY Classes can be unit tested. Only valuable if you unit test (which you really,
really should)

NoSQL, Windows Azure, and the argument for composability
Years ago, I was often met with a blank expression when I tried to convince develop-
ers and architects of the benefits of DI.

“Okay, so you can swap out your relational data access component for something
else. For what? Is there any alternative to relational databases?”

XML files never seemed like a convincing alternative in highly scalable enterprise sce-
narios. This has changed significantly in the last couple of years.

Windows Azure was announced at PDC 2008 and has done much to convince even
die-hard Microsoft-only organizations to reevaluate their position when it comes to
data storage. There’s now a real alternative to relational databases, and I only have
to ask if people want their application to be “cloud-ready.” The replacement argument
has now become much stronger.

A related movement can be found in the whole NoSQL concept that models applica-
tions around denormalized data—often document databases, but concepts such as
Event Sourcing8 are also becoming increasingly important.

8 Martin Fowler, “Event Sourcing,” 2005, www.martinfowler.com/eaaDev/EventSourcing.htmls

www.martinfowler.com/eaaDev/EventSourcing.html

17Hello DI

instance. However, you can introduce late binding by changing only a single piece of
the code. You only need to change this line of code:

IMessageWriter writer = new ConsoleMessageWriter();

To enable late binding, you might replace that line of code with something like this:

var typeName =
 ConfigurationManager.AppSettings["messageWriter"];
var type = Type.GetType(typeName, true);
IMessageWriter writer =
 (IMessageWriter)Activator.CreateInstance(type);

By pulling the type name from the application configuration file and creating a Type
instance from it, you can use Reflection to create an instance of IMessageWriter with-
out knowing the concrete type at compile time.

 To make this work, you specify the type name in the messageWriter application
setting in the application configuration file:

<appSettings>
 <add key="messageWriter"
 value="Ploeh.Samples.HelloDI.CommandLine.ConsoleMessageWriter,
 ➥HelloDI" />
</appSettings>

WARNING This example takes some shortcuts to make a point. In fact, it suf-
fers from the CONSTRAINED CONSTRUCTION anti-pattern, covered in detail in
chapter 5.

Loose coupling enables late binding because there’s only a single place where you cre-
ate the instance of the IMessageWriter. Because the Salutation class works exclu-
sively against the IMessageWriter interface, it never notices the difference.

 In the Hello DI example, late binding would enable you to write the message to a
different destination than the console—for example, a database or a file. It’s possible
to add such features even though you didn’t explicitly plan ahead for them.

EXTENSIBILITY

Successful software must be able to change. You’ll need to add new features and extend
existing features. Loose coupling enables us to efficiently recompose the application,
similar to the way that we can rewire electrical appliances using plugs and sockets.

 Let’s say that you want to make the Hello DI example more secure by only allowing
authenticated users to write the message. The next listing shows how you can add that
feature without changing any of the existing features: you add a new implementation
of the IMessageWriter interface.

public class SecureMessageWriter : IMessageWriter
{
 private readonly IMessageWriter writer;

Listing 1.2 Extending the Hello DI application with a security feature

18 CHAPTER 1 A Dependency Injection tasting menu

 public SecureMessageWriter(IMessageWriter writer)
 {
 if (writer == null)
 {
 throw new ArgumentNullException("writer");
 }

 this.writer = writer;
 }

 public void Write(string message)
 {
 if (Thread.CurrentPrincipal.Identity
 .IsAuthenticated)
 {
 this.writer.Write(message);
 }
 }
}

The SecureMessageWriter class implements the IMessageWriter interface while also
consuming it: it uses CONSTRUCTOR INJECTION to request an instance of IMessageWriter.
This is a standard application of the Decorator design pattern that I mentioned in sec-
tion 1.1.2. We’ll talk much more about Decorators in chapter 9.

 The Write method is implemented by first checking whether the current user is
authenticated B. Only if this is the case does it allow the decorated writer field to
Write c the message.

NOTE The Write method in listing 1.2 accesses the current user via an AMBI-
ENT CONTEXT. A more flexible, but slightly more complex, option would’ve
been to also supply the user via CONSTRUCTOR INJECTION.

The only place where you need to change existing code is in the Main method,
because you need to compose the available classes differently than before:

IMessageWriter writer =
 new SecureMessageWriter(
 new ConsoleMessageWriter());

Notice that you decorate the old ConsoleMessageWriter instance with the new
SecureMessageWriter class. Once more, the Salutation class is unmodified because
it only consumes the IMessageWriter interface.

 Loose coupling enables you to write code which is open for extensibility, but closed for
modification. This is called the OPEN/CLOSED PRINCIPLE. The only place where you need to
modify the code is at the application’s entry point; we call this the COMPOSITION ROOT.

 The SecureMessageWriter implements the security features of the application,
whereas the ConsoleMessageWriter addresses the user interface. This enables us to
vary these aspects independently of each other and compose them as needed.

Check
authentication

b

Write
messagec

	Wow! eBook

	Front cover
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Code conventions and downloads
	Author Online
	About the author

	about the cover illustration
	Part 1—Putting Dependency Injection on the map
	A Dependency Injection tasting menu
	1.1 Writing maintainable code
	1.1.1 Unlearning DI
	1.1.2 Understanding the purpose of DI

	1.2 Hello DI
	1.2.1 Hello DI code
	1.2.2 Benefits of DI

