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Introduction

The numbers have no way of speaking for themselves. We speak for them.
We imbue

them with meaning.

https://github.com/dspiegel29/ArtofStatistics


— Nate Silver, The Signal and the Noise1

Why We Need Statistics

Harold Shipman was Britain’s most prolific convicted murderer, though he

does not fit the archetypal profile of a serial killer. A mild-mannered family

doctor working in a suburb of Manchester, between 1975 and 1998 he

injected at least 215 of his mostly elderly patients with a massive opiate

overdose. He finally made the mistake of forging the will of one of his

victims so as to leave him some money: her daughter was a solicitor,

suspicions were aroused, and forensic analysis of his computer showed he

had been retrospectively changing patient records to make his victims appear

sicker than they really were. He was well known as an enthusiastic early

adopter of technology, but he was not tech-savvy enough to realize that
every

change he made was time-stamped (incidentally, a good example of data

revealing hidden meaning).

Of his patients who had not been cremated, fifteen were exhumed and

lethal levels of diamorphine, the medical form of heroin, were found in their

bodies. Shipman was subsequently tried for fifteen murders in 1999, but

chose not to offer any defence and never uttered a word at his trial. He was

found guilty and jailed for life, and a public inquiry was set up to determine

what crimes he might have committed apart from those for which he had



been tried, and whether he could have been caught earlier. I was one of a

number of statisticians called to give evidence at the public inquiry, which

concluded that he had definitely murdered 215 of his patients, and possibly

45 more. 2

This book will focus on using statistical sciencefn1 to answer the kind of
questions that arise when we want to better understand the world – some of

these questions will be highlighted in a box. In order to get some insight into

Shipman’s behaviour, a natural first question is:

What kind of people did Harold Shipman murder, and when did they die?

The public inquiry provided details of each victim’s age, gender and date of

death. Figure 0.1 is a fairly sophisticated visualization of this data, showing
a

scatter-plot of the age of victim against their date of death, with the shading

of the points indicating whether the victim was male or female. Bar-charts

have been superimposed on the axes showing the pattern of ages (in 5–year

bands) and years.

Some conclusions can be drawn by simply taking some time to look at the

figure. There are more black than white dots, and so Shipman’s victims were

mainly women. The bar-chart on the right of the picture shows that most of

his victims were in their 70s and 80s, but looking at the scatter of points

reveals that although initially they were all elderly, some younger cases crept



in as the years went by. The bar-chart at the top clearly shows a gap around

1992 when there were no murders. It turned out that before that time

Shipman had been working in a joint practice with other doctors but then,

possibly as he felt under suspicion, he left to form a single-handed general

practice. After this his activities accelerated, as demonstrated by the top bar-

chart.



Figure 0.1

A scatter-plot showing the age and the year of death of Harold

Shipman’s 215 confirmed victims. Bar-charts have been added on



the axes to reveal the pattern of ages and the pattern of years in

which he committed murders.

This analysis of the victims identified by the inquiry raises further

questions about the way he committed his murders. Some statistical
evidence

is provided by data on the time of day of the death of his supposed victims,
as

recorded on the death certificate. Figure 0.2 is a line graph comparing the

times of day that Shipman’s patients died to the times that a sample of

patients of other local family doctors died. The pattern does not require
subtle

analysis: the conclusion is sometimes known as ‘inter-ocular’, since it hits

you between the eyes. Shipman’s patients tended overwhelmingly to die in

the early afternoon.

The data cannot tell us why they tended to die at that time, but further

investigation revealed that he performed his home visits after lunch, when he

was generally alone with his elderly patients. He would offer them an



injection that he said was to make them more comfortable, but which was in

fact a lethal dose of diamorphine: after a patient had died peacefully in front

of him, he would change their medical record to make it appear as if this was

an expected natural death. Dame Janet Smith, who chaired the public
inquiry,

later said, ‘I still do feel it was unspeakably dreadful, just unspeakable and



unthinkable and unimaginable that he should be going about day after day

pretending to be this wonderfully caring doctor and having with him in his

bag his lethal weapon … which he would just take out in the most matter-of-

fact way.’

Figure 0.2

The time at which Harold Shipman’s patients died, compared to

the times at which patients of other local general practitioners died.

The pattern does not require sophisticated statistical analysis.

He was taking some risk, since a single post-mortem would have exposed

him, but given the age of his patients and the apparent natural causes of

death, none were performed. And his reasons for committing these murders

have never been explained: he gave no evidence at his trial, never spoke

about his misdeeds to anyone, including his family, and committed suicide in

prison, conveniently just in time for his wife to collect his pension.

We can think of this type of iterative, exploratory work as ‘forensic’

statistics, and in this case it was literally true. There is no mathematics, no

theory, just a search for patterns that might lead to more interesting
questions.

The details of Shipman’s misdeeds were determined using evidence specific

to each individual case, but this data analysis supported a general

understanding of how he went about his crimes.



Later in this book, in Chapter 10, we will see whether formal statistical

analysis could have helped catch Shipman earlier.fn2 In the meantime, the

Shipman story amply demonstrates the great potential of using data to help
us

understand the world and make better judgements. This is what statistical

science is all about.

Turning the World Into Data

A statistical approach to Harold Shipman’s crimes required us to stand back

from the long list of individual tragedies for which he was responsible. All

those personal, unique details of people’s lives, and deaths, had to be
reduced

to a set of facts and numbers that could be counted and drawn on graphs.
This

might at first seem cold and dehumanizing, but if we are to use statistical

science to illuminate the world, then our daily experiences have to be turned

into data, and this means categorizing and labelling events, recording

measurements, analysing the results and communicating the conclusions.

Simply categorizing and labelling can, however, present a serious

challenge. Take the following basic question, which should be of interest to

everyone concerned with our environment:

How many trees are there on the planet?

Before even starting to think about how we might go about answering this



question, we first have to settle a rather basic issue. What is a ‘tree’? You

may feel you know a tree when you see it, but your judgement may differ

considerably from others who might consider it a bush or a shrub. So to turn

experience into data, we have to start with rigorous definitions.

It turns out that the official definition of a ‘tree’ is a plant with a woody

stem that has a sufficiently large diameter at breast height, known as the

DBH. The US Forest Service demands a plant has a DBH of greater than 5

inches (12.7 cm) before officially declaring it a tree, but most authorities use

a DBH of 10 cm (4 inches).

But we cannot wander round the entire planet individually measuring each

woody-stemmed plant and counting up those that meet this criterion. So the

researchers who investigated this question took a more pragmatic approach:

they first took a series of areas with a common type of landscape, known as
a

biome, and counted the average number of trees found per square kilometre.

They then used satellite imaging to estimate the total area of the planet

covered by each type of biome, carried out some complex statistical

modelling, and eventually came up with an estimated total of 3.04 trillion

(that is 3,040,000,000,000) trees on the planet. This sounds a lot, except they

reckoned there used to be twice this number.fn3 3

If authorities differ about what they call a tree, it should be no surprise that



more nebulous concepts are even more challenging to pin down. To take an

extreme example, the official definition of ‘unemployment’ in the UK was

changed at least thirty-one times between 1979 and 1996. 4 The definition of

Gross Domestic Product (GDP) is continually being revised, as when trade
in

illegal drugs and prostitution was added to the UK GDP in 2014; the

estimates used some unusual data sources – for example Punternet, a review

website that rates prostitution services, provided prices for different

activities. 5

Even our most personal feelings can be codified and subjected to statistical

analysis. In the year ending September 2017, 150,000 people in the UK were

asked as part of a survey: ‘Overall, how happy did you feel yesterday? ’6

Their average response, on a scale from zero to ten, was 7.5, an
improvement

from 2012 when it was 7.3, which might be related to economic recovery

since the financial crash of 2008. The lowest scores were reported for those

aged between 50 and 54, and the highest between 70 and 74, a typical
pattern

for the UK.fn4

Measuring happiness is hard, whereas deciding whether someone is alive

or dead should be more straightforward: as the examples in this book will

demonstrate, survival and mortality is a common concern of statistical



science. But in the US each state can have its own legal definition of death,

and although the Uniform Declaration of Death Act was introduced in 1981

to try to establish a common model, some small differences remain.
Someone

who had been declared dead in Alabama could, at least in principle, cease to

be legally dead were they across the state border in Florida, where the

registration must be made by two qualified doctors. 7

These examples show that statistics are always to some extent constructed

on the basis of judgements, and it would be an obvious delusion to think the

full complexity of personal experience can be unambiguously coded and put

into a spreadsheet or other software. Challenging though it is to define, count

and measure characteristics of ourselves and the world around us, it is still

just information, and only the starting point to real understanding of the

world.

Data has two main limitations as a source of such knowledge. First, it is

almost always an imperfect measure of what we are really interested in:

asking how happy people were last week on a scale from zero to ten hardly

encapsulates the emotional wellbeing of the nation. Second, anything we

choose to measure will differ from place to place, from person to person,

from time to time, and the problem is to extract meaningful insights from all

this apparently random variability.



For centuries, statistical science has faced up to these twin challenges, and

played a leading role in scientific attempts to understand the world. It has

provided the basis for interpreting data, which is always imperfect, in order
to

distinguish important relationships from the background variability that

makes us all unique. But the world is always changing, as new questions are

asked and new sources of data become available, and statistical science has

had to change too.

People have always counted and measured, but modern statistics as a

discipline really began in the 1650s when, as we shall see in Chapter 8,

probability was properly understood for the first time by Blaise Pascal and

Pierre de Fermat. Given this solid mathematical basis for dealing with

variability, progress was then remarkably rapid. When combined with data
on

the ages at which people die, the theory of probability provided a firm basis

for calculating pensions and annuities. Astronomy was revolutionized when

scientists grasped how probability theory could handle variability in

measurements. Victorian enthusiasts became obsessed with collecting data

about the human body (and everything else), and established a strong

connection between statistical analysis and genetics, biology and medicine.

Then in the twentieth century statistics became more mathematical and,



unfortunately for many students and practitioners, the topic became

synonymous with the mechanical application of a bag of statistical tools,

many named after eccentric and argumentative statisticians that we shall
meet

later in this book.

This common view of statistics as a basic ‘bag of tools’ is now facing

major challenges. First, we are in an age of data science, in which large and

complex data sets are collected from routine sources such as traffic monitors,

social media posts and internet purchases, and used as a basis for

technological innovations such as optimizing travel routes, targeted

advertising or purchase recommendation systems – we shall look at

algorithms based on ‘big data’ in Chapter 6. Statistical training is
increasingly seen as just one necessary component of being a data scientist,

together with skills in data management, programming and algorithm

development, as well as proper knowledge of the subject matter.

Another challenge to the traditional view of statistics comes from the huge

rise in the amount of scientific research being carried out, particularly in the

biomedical and social sciences, combined with pressure to publish in high-

ranking journals. This has led to doubts about the reliability of parts of the

scientific literature, with claims that many ‘discoveries’ cannot be
reproduced

by other researchers – such as the continuing dispute over whether adopting



an assertive posture popularly known as a ‘power pose’ can induce hormonal

and other changes. 8 The inappropriate use of standard statistical methods
has

received a fair share of the blame for what has become known as the

reproducibility or replication crisis in science.

With the growing availability of massive data sets and user-friendly

analysis software, it might be thought that there is less need for training in

statistical methods. This would be naïve in the extreme. Far from freeing us

from the need for statistical skills, bigger data and the rise in the number and

complexity of scientific studies makes it even more difficult to draw

appropriate conclusions. More data means that we need to be even more

aware of what the evidence is actually worth.

For example, intensive analysis of data sets derived from routine data can

increase the possibility of false discoveries, both due to systematic bias

inherent in the data sources and from carrying out many analyses and only

reporting whatever looks most interesting, a practice sometimes known as

‘data-dredging’. In order to be able to critique published scientific work, and

even more the media reports which we all encounter on a daily basis, we

should have an acute awareness of the dangers of selective reporting, the

need for scientific claims to be replicated by independent researchers, and
the



danger of over-interpreting a single study out of context.

All these insights can be brought together under the term data literacy,

which describes the ability to not only carry out statistical analysis on real-

world problems, but also to understand and critique any conclusions drawn

by others on the basis of statistics. But improving data literacy means

changing the way statistics is taught.

Teaching Statistics

Generations of students have suffered through dry statistics courses based on

learning a set of techniques to be applied in different situations, with more

regard to mathematical theory than understanding both why the formulae are

being used, and the challenges that arise when trying to use data to answer

questions.

Fortunately this is changing. The needs of data science and data literacy

demand a more problem-driven approach, in which the application of
specific

statistical tools is seen as just one component of a complete cycle of

investigation. The PPDAC structure has been suggested as a way of

representing a problem-solving cycle, which we shall adopt throughout this

book. 9 Figure 0.3 is based on an example from New Zealand, which has
been a world-leader in statistics education in schools.

The first stage of the cycle is specifying a Problem; statistical inquiry



always starts with a question, such as our asking about the pattern of Harold

Shipman’s murders or the number of trees in the world. Later in this book
we

shall focus on problems ranging from the expected benefit of different

therapies immediately following breast cancer surgery, to why old men have

big ears.

It is tempting to skip over the need for a careful Plan. The Shipman

question simply required the collection of as much data as possible on his

victims. But the people counting trees paid meticulous attention to precise

definitions and how to carry out the measurements, since confident

conclusions can only be drawn from a study which has been appropriately



designed. Unfortunately, in the rush to get data and start analysis, attention
to

design is often glossed over.



Figure 0.3

The PPDAC problem-solving cycle, going from Problem, Plan,

Data, Analysis to Conclusion and communication, and starting

again on another cycle.

Collecting good Data requires the kind of organizational and coding skills

that are being seen as increasingly important in data science, particularly as

data from routine sources may need a lot of cleaning in order to get it ready

to be analysed. Data collection systems may have changed over time, there

may be obvious errors, and so on – the phrase ‘found data’ neatly

communicates that it may be rather messy, like something picked up in the

street.

The Analysis stage has traditionally been the main emphasis of statistics

courses, and we shall cover a range of analytic techniques in this book; but

sometimes all that is required is a useful visualization, as in Figure 0.1.

Finally, the key to good statistical science is drawing appropriate
Conclusions

that fully acknowledge the limitations in the evidence, and communicating

them clearly, as in the graphical illustrations of the Shipman data. Any

conclusions generally raise more questions, and so the cycle starts over
again,

as when we started looking at the time of day when Shipman’s patients died.



Although in practice the PPDAC cycle laid out in Figure 0.3 may not be

followed precisely, it underscores that formal techniques for statistical

analysis play only one part in the work of a statistician or data scientist.

Statistical science is a lot more than a branch of mathematics involving

esoteric formulae with which generations of students have (often reluctantly)

struggled.

This Book

When I was a student in Britain in the 1970s, there were just three TV

channels, computers were the size of a double wardrobe, and the closest
thing

we had to Wikipedia was on the imaginary handheld device in Douglas

Adams’ (remarkably prescient) Hitchhiker’s Guide to the Galaxy. For self-

improvement we therefore turned to Pelican books, and their iconic blue

spines were a standard feature of every student bookshelf.

Because I was studying statistics, my Pelican collection featured Facts

from Figures by M. J. Moroney (1951) and How to Lie with Statistics by

Darrell Huff (1954). These venerable publications sold in the hundreds of

thousands, reflecting both the level of interest in statistics and the dismal
lack

of choice at that time. These classics have stood up remarkably well to the

intervening sixty-five years, but the current era demands a different
approach



to teaching statistics based on the principles laid out above.

This book therefore uses real-world problem-solving as a starting point for

introducing statistical ideas. Some of these ideas may seem obvious, but

some are more subtle and may require some mental effort, although

mathematical skills will not be needed. Compared to traditional texts, this

book focuses on conceptual issues rather than technicalities, and features
only

a few, fairly innocuous equations supported by a Glossary. Software is a vital

part of any work in data science and statistics but it is not a focus of this
book

– tutorials are readily available for freely available environments such as R

and Python.

The questions featured in the boxes can all, to a certain extent, be answered

through statistical analysis, although they differ widely in their scope. Some

are important scientific hypotheses, such as whether the Higgs boson exists,

or if there really is convincing evidence for extra-sensory perception (ESP).

Others are questions about health care, such as whether busier hospitals have

higher survival rates, and if screening for ovarian cancer is beneficial.

Sometimes we just want to estimate quantities, such as the cancer risk from

bacon sandwiches, the number of sexual partners people in Britain have in

their lifetime, and the benefit of taking a daily statin.



And some questions are just interesting, such as identifying the luckiest

survivor from the Titanic; whether Harold Shipman could have been caught

earlier; and assessing the probability that a skeleton found in a Leicester car

park really was that of Richard III.

This book is intended for both students of statistics who are seeking a non-

technical introduction to the basic issues, and general readers who want to be

more informed about the statistics they encounter both in their work and in

everyday life. My emphasis is on handling statistics skilfully and with care:

numbers may appear to be cold, hard facts, but the attempts to measure trees,

happiness and death have already shown that they need to be treated with

delicacy.

Statistics can bring clarity and insight into the problems we face, but we

are all familiar with the way they can be abused, often to promote an opinion

or simply to attract attention. The ability to assess the trustworthiness of

statistical claims seems a key skill in the modern world, and I hope that this

book may help to empower people to question the numbers that they

encounter in their daily life.

Summary

Turning experiences into data is not straightforward, and data is inevitably
limited in its

capacity to describe the world.



Statistical science has a long and successful history, but is now changing in
the light of

increased availability of data.

Skill in statistical methods plays an important part of being a data scientist.

Teaching statistics is changing from a focus on mathematical methods to one
based on an

entire problem-solving cycle.

The PPDAC cycle provides a convenient framework: Problem – Plan – Data
– Analysis –

Conclusion and communication.

Data literacy is a key skill for the modern world.

C H A P T E R 1

Getting Things in Proportion: Categorical

Data and Percentages

What happened to children having heart surgery in Bristol between 1984 and
1995?

Joshua L was 16 months old and had transposition of the great arteries, a

severe form of congenital heart disease in which the main vessels coming

from the heart are attached to the wrong ventricle. He needed an operation to

‘switch’ the arteries, and just after 7 a.m. on 12 January 1995 his parents
said

goodbye to him and watched as he was taken for his surgery in Bristol Royal

Infirmary. But Joshua’s parents were unaware that stories about the poor



surgical survival rates at Bristol had been circulating since the early 1990s.

Nobody told them that nurses had left the unit rather than continue telling

parents that their child had died, or that the previous evening there had been
a

late-night meeting at which it had been debated whether to cancel Joshua’s

operation. 1

Joshua died on the operating table. The following year the General

Medical Council (the medical regulator) launched an investigation after

complaints from Joshua’s and other bereaved parents, and in 1998 two

surgeons and the ex-chief executive were found guilty of serious medical

misconduct. Public concern did not die down, and an official inquiry was

ordered: this brought in a team of statisticians who were given the grim task

of comparing the survival rates in Bristol with elsewhere in the UK between

1984 and 1995. I led this team.

We first had to determine how many children had had heart surgery, and

how many had died. This sounds like it should be straightforward but, as

shown in the previous chapter, simply counting events can be challenging.

What is a ‘child’? What counts as ‘heart surgery’? When can death be

attributed to surgery? And even when these definitions have been decided,

could we determine how many of each there had been?

We took a ‘child’ as anyone under 16, and focused on ‘open’ surgery in



which the heart had been stopped and its function replaced by cardio-

pulmonary bypass. There can be multiple operations per admission, but these

were considered as one event. Deaths were counted if they occurred within

30 days of the operation, whether or not in hospital or due to the surgery. We

knew that death was an imperfect measure of the quality of the outcome, as
it

ignored children who were brain-damaged or otherwise disabled as a result
of

the surgery, but we did not have the data on longer-term outcomes.

The main source of data was national Hospital Episode Statistics (HES),

which were derived from administrative data entered by low-paid coders.

HES had a poor reputation among doctors, but this source had the great

advantage that it could be linked to national death records. There was also a

parallel system of data submitted directly to a Cardiac Surgical Registry

(CSR) established by the surgeons’ professional society.

These two sources of data, though they were supposed to be about exactly

the same practice, showed considerable disagreement: for 1991–1995, HES

said there had been 62 deaths out of 505 open operations (14%), whereas

CSR said there had been 71 deaths out of 563 operations (13%). No less than

five additional local sources of data were available, from anaesthetic records

to the surgeons’ own personal logs. Bristol was awash with data, but none of



the data sources could be considered the ‘truth’, and nobody had taken

responsibility for analysing and acting on the surgical outcomes.

We calculated that if patients at Bristol had the average risk prevailing

elsewhere in the UK, Bristol would have expected to have had 32 deaths
over

this period, instead of the 62 recorded in HES, which we reported as ‘30

excess deaths’ between 1991 and 1995. fn1 The exact numbers varied

according to the data sources, and it may seem extraordinary that we could

not even establish the basic facts about the number of operations and their

outcome, although current record systems should be better.

These findings had wide press coverage, and the Bristol inquiry led to a

major change in attitudes to monitoring clinical performance: no longer was

the medical profession trusted to police itself. Mechanisms to publicly report

hospital survival data were established, although, as we shall now see, the

way in which that data is displayed can itself influence the perception of

audiences.

Communicating Counts and Proportions

Data that records whether individual events have happened or not is known

as binary data , as it can only take on two values, generally labelled as yes
and no. Sets of binary data can be summarized by the number of times and

the percentage of cases in which an event occurred.



The theme of this chapter is that the basic presentation of statistics is

important. In a sense we are jumping to the last step of the PPDAC cycle in

which conclusions are communicated, and while the form of this

communication has not traditionally been considered an important topic in

statistics, rising interest in data visualization reflects a change in this
attitude.

So both in this chapter and the next we shall concentrate on ways of

displaying data so that we can quickly get the gist of what is going on
without

detailed analysis, starting with a look at alternative ways of displaying data

that, largely because of the Bristol inquiry, are now publicly available.

Table 1.1 shows the outcomes of nearly 13,000 children who had heart

surgery in the UK and Ireland between 2012 and 2015. 2 Two hundred and

sixty-three babies died within 30 days of their operation, and every one of

these deaths is a tragedy to the family involved. It will be little consolation
to

them that survival rates have improved hugely from the time of the Bristol

inquiry, and now average 98%, and so there is a more hopeful prospect for

families of children facing heart surgery.

A table can be considered as a type of graphic, and requires careful design

choices of colour, font and language to ensure engagement and readability.



The audience’s emotional response to the table may also be influenced by
the

choice of which columns to display. Table 1.1 shows the results in terms of

both survivors and deaths, but in the US mortality rates from child heart

surgery are reported, while the UK provides survival rates. This is known as

negative or positive framing , and its overall effect on how we feel is
intuitive

and well-documented: ‘5% mortality’ sounds worse than ‘95% survival’.

Reporting the actual number of deaths as well as the percentage can also

increase the impression of risk, as this total might then be imagined as a

crowd of real people.





Table 1.1

Outcomes of children’s heart surgery in UK and Irish hospitals between
2012 and 2015, in terms of

survival or not, 30 days after surgery.

A classic example of how alternative framing can change the emotional

impact of a number is an advertisement that appeared on the London

Underground in 2011, proclaiming that ‘99% of young Londoners do not

commit serious youth violence’. These ads were presumably intended to

reassure passengers about their city, but we could reverse its emotional

impact with two simple changes. First, the statement means that 1% of
young

Londoners do commit serious violence. Second, since the population of

London is around 9 million, there are around 1 million people aged between

15 and 25, and if we consider these as ‘young’, this means there are 1% of 1

million or a total of 10,000 seriously violent young people in the city. This

does not sound at all reassuring. Note the two tricks used to manipulate the

impact of this statistic: convert from a positive to a negative frame, and then

turn a percentage into actual numbers of people.

Ideally both positive and negative frames should be presented if we want

to provide impartial information, although the order of columns might still

influence how the table is interpreted. The order of the rows of a table also



needs to be considered carefully. Table 1.1 shows the hospitals in order of
the

number of operations in each, but if they had been presented, say, in order of

mortality rates with the highest at the top of the table, this might give the

impression that this was a valid and important way of comparing hospitals.

Such league tables are favoured by the media and even some politicians, but

can be grossly misleading: not only because the differences could be due to

chance variation, but because the hospitals may be taking in very different

types of cases. In Table 1.1, for example, we might suspect that
Birmingham,

one of the biggest and most well-known children’s hospitals, takes on the

most severe cases, and so it would be unfair, to put it mildly, to highlight

their apparently unimpressive overall survival rates.fn2

The survival rates can be presented in a horizontal bar-chart such as the

one shown in Figure 1.1. A crucial choice is where to start the horizontal

axis: if the values start from 0%, all the bars will be almost the full length of

the graphic, which will clearly show the extraordinarily high survival rates,

but the lines will be indistinguishable. But the oldest trick of misleading

graphics is to start the axis at say 95%, which will make the hospitals look



extremely different, even if the variation is in fact only what is attributable to

chance alone.

Choosing the start of the axis therefore presents a dilemma. Alberto Cairo,

author of influential books on data visualization, 3 suggests you should



always begin with a ‘logical and meaningful baseline’, which in this
situation

appears difficult to identify – my rather arbitrary choice of 86% roughly

represents the unacceptably low survival in Bristol twenty years previously.

Figure 1.1

Horizontal bar-chart of 30–day survival rates for thirteen hospitals.

The choice of the start of the horizontal axis, here 86%, can have a

crucial effect on the impression given by the graphic. If the axis

starts at 0%, all the hospitals will look indistinguishable, whereas if

we started at 95% the differences would look misleadingly

dramatic.

I began this book with a quotation from Nate Silver, the founder of data-

based platform FiveThirtyEight and first famous for accurately predicting
the

2008 US presidential election, who eloquently expressed the idea that

numbers do not speak for themselves – we are responsible for giving them

meaning. This implies that communication is a key part of the problem-

solving cycle, and I have shown in this section how the message from a set
of

simple proportions can be influenced by our choices of presentation.

We now need to introduce an important and convenient concept that will

help us get beyond simple yes/no questions.



Categorical Variables

A variable is defined as any measurement that can take on different values in

different circumstances; it’s a very useful shorthand term for all the types of

observations that comprise data. Binary variables are yes/no questions such

as whether someone is alive or dead and whether they are female or not:
both

of these vary between people, and can, even for gender, vary within people
at

different times. Categorical variables are measures that can take on two or

more categories, which may be

Unordered categories: such as a person’s country of origin, the colour of

a car, or the hospital in which an operation takes place.

Ordered categories: such as the rank of military personnel.

Numbers that have been grouped: such as levels of obesity, which is

often defined in terms of thresholds for the body mass index (BMI). fn3

When it comes to presenting categorical data, pie charts allow an impression

of the size of each category relative to the whole pie, but are often visually

confusing, especially if they attempt to show too many categories in the
same

chart, or use a three-dimensional representation that distorts areas. Figure 1.2

shows a fairly hideous example modelled on the kind offered by Microsoft

Excel, showing the proportions of the 12,933 child heart patients from Table



1.1 that are treated in each hospital.

Multiple pie charts are generally not a good idea, as comparisons are

hampered by the difficulty in assessing the relative sizes of areas of different

shapes. Comparisons are better based on height or length alone in a bar
chart.

Figure 1.3 shows a simpler, clearer example of a horizontal bar chart of the

proportions being treated in each hospital.

Comparing a Pair of Proportions



We have seen how a set of proportions can be elegantly compared using a
bar



chart, and so it would be reasonable to think that comparing two proportions

would be a trivial matter. But when these proportions represent estimates of

the risks of experiencing some harm, then the way in which those risks are

compared becomes a serious and contested issue. Here is a typical question:

What’s the cancer risk from bacon sandwiches?

Figure 1.2

The proportion of all child heart operations being carried out in

each hospital, displayed in a 3D pie chart from Excel. This deeply

unpleasant chart makes categories near the front look bigger, and

so makes it impossible to make visual comparisons between

hospitals.



Figure 1.3

Percentage of all child heart operations being carried out in each

hospital: a clearer representation using a horizontal bar chart.

We’re all familiar with hyperbolic media headlines that warn us that
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